TSitologiya i Genetika 2019, vol. 53, no. 4, 68-69
Cytology and Genetics 2019, vol. 53, no. 4, 321–324, doi: https://www.doi.org/10.3103/S009545271904011X

The complete mitochondrial genome of the Rhus gall aphid Nurudea shiraii (hemiptera : aphididae : eriosomatinae)

Shuanqin Yue, Jun Wen, Zhumei Ren

  1. School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan Shanxi 030006, China
  2. Department of Botany, National Museum of Natural History, Smithsonian Institution, MRC-166, P.O. Box 37012, Washington, DC 20013-7012, U.S.A

Nurudea shiraii, a member of Rhus gall aphids, lives on the primary host-plant Rhus to form galls, which are rich in tannins widely utilized in the different fields. In this study, we performed the sequencing and analysis of the complete mitochondrial genome (mitogenome) of the Rhus gall aphid N. shiraii.  The mitogenome sequence is 15,389 bp in length with a high A + T content of 84.1%, containing 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one non-coding control region (D-loop). All protein-coding genes start with a typical ATN codon and terminate with a TAA codon except COI, and ND4 and ND5 by a single T residue. The phylogeny of Aphididae suggests that Nurudea shiraii is sister clade to the clade of the other two Rhus gall aphids Schlechtendalia chinensis and Melaphis rhois with the present sampling scheme.

Keywords: Nurudea shiraii; Mitochondrion; Genome

TSitologiya i Genetika
2019, vol. 53, no. 4, 68-69

Current Issue
Cytology and Genetics
2019, vol. 53, no. 4, 321–324,
doi: 10.3103/S009545271904011X

Full text and supplemented materials

References

1. Zhang, G.X., Qiao, G.X., Zhong, T.S., and Zhang, W.Y., Fauna Sinica Insecta, Homoptera: Mindaridae and Pemphigidae, Beijing: Sci. Press, 1999, vol. 14, pp. 282–286.

2. Heie, O.E. and Wegierek, P., Diagnoses of the higher taxa of Aphidomorpha (Hemiptera: Sternorrhyncha), Redia, 2009, vol. 92, pp. 261–269.

3. Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., and Saunders, N.C., Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics, Ann. Rev. Ecol. Sys., 1987, vol. 18, pp. 489–522.

4. Ren, Z.M., Bai, X., Harris, A.J., and Wen, J., Complete mitochondrial genome of the Rhus gall aphid Schlechtendalia chinensis (Hemiptera: Aphididae: Eriosomatinae), Mitochondr. DNA, 2016, vol. 1, no. 1, pp. 849–850.

5. Ren, Z.M. and Wen, J., Complete mitochondrial genome of the North American Rhus gall aphid Melaphis rhois (Hemiptera: Aphididae: Eriosomatinae), Mitochondr. DNA, 2017, vol. 2, no. 1, pp. 169–170.

6. Zimmer, E.A. and Wen, J., Using nuclear gene data for plant phylogenetics: progress and prospects II. Next-gene approaches, J. Syst. Evol., 2015, vol. 53, no. 5, pp. 371–379.

7. Zerbino, D.R. and Birney, E., Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res., 2008, vol. 18, no. 5, pp. 821–829.

8. Lohse, M., Drechsel, O., Kahlau, S., and Bock, R., Organellar genome DRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets, Nucleic Acids Res., 2013, vol. 41, pp. W575–W581.

9. Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772–780.

10. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, no. 9, pp. 1312–1313.