ISSN 0564-3783  



Main page
Contacts
Themes
Archive  
Themes
Subscription
Information to authors
Editorial board
Mobile version


In Ukrainian

Export citations
UNIMARC
BibTeX
RIS





Isolation of antimicrobials from native plants of taif governorate

El-Shehawi A.M., Ahmed M.M., Elseehy M.M., Hassan M.M.

 




Plant defensins are subgroup of plant antimicrobial peptides that have high potentials in developing safe natural agricultural and pharmaceutical biocontrol products as alternatives for the current chemical pesticides, insecticides, and antibiotics. In this study, the level of defensin gene expression was evaluated in floral buds of 9 native plants from Saudi Arabia environment using reverse transcription and polymerase chain reaction (RT-PCR). As defensins are highly expressed at the mRNA level in Ochradenus baccatus (Ob), it was used for the isolation of defensin peptides using ion exchange chromatography followed by gel filtration using Sephadex G50. SDS-PAGE of ion exchange purified proteins detected several bands in a range of 2–10 kD. These proteins were separated by gel filtration using Sephadex G50. The resultant peptide of 5kD showed an antimicrobial activity. The peptide inhibited Gram positive and Gram negative bacteria with IC50 ranged from 10 to 25 µg/mL. It also inhibited 25 to 60 % of fungal linear growth at concentrations of 12.5 and 25 µg/ mL. The present results demonstrate that, we could separate and purify a 5 kD peptide from Ob. This peptide could be utilized to develop natural antimicrobial products.

Key words: Plant; antimicrobial peptides; defensins; gene expression; PCR; protein purification

Tsitologiya i Genetika 2019, vol. 53, no. 3, pp. 75-77

  1. Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
  2. Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
  3. Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
  4. Department of Biochemistry, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
  5. Department of Genetics, Faculty of Agriculture, Minufiya University, Sheben El-Kom, Egypt

E-mail: elshehawi hotmail.com

El-Shehawi A.M., Ahmed M.M., Elseehy M.M., Hassan M.M. Isolation of antimicrobials from native plants of taif governorate, Tsitol Genet., 2019, vol. 53, no. 3, pp. 75-77.

In "Cytology and Genetics":
A. M. El-Shehawi, M. M. Ahmed, M. M. Elseehy, M. M. Hassan Isolation of Antimicrobials from Native Plants of Taif Governorate, Cytol Genet., 2019, vol. 53, no. 3, pp. 250–260
DOI: 10.3103/S0095452719030095


References

1. Abreu, A.C., Borges, A., Simoes, L.C., Saavedra, M.J., and Simoes, M., Antibacterial activity of phenylisothiocyanate on Escherichia coli and Staphylococcus aureus, Med. Chem., 2013, vol. 9, pp. 756–761. https://doi.org/10.2174/1573406411309050016

2. Meneguetti, B.T., Machado, L.D.S., Oshiro, K.G.N., Nogueira, M.L., Carvalho, C.M.E., and Franco, O.L., Antimicrobial peptides from fruits and their potential use as biotechnological tools—a review and outlook. Front. Microbiol., 2017, vol. 7, p. 2136. https://doi.org/10.3389/fmicb.2016.02136

3. Guani-Guerra, E., Garcia-Cruz, M.L., Zavala-Molina, D.M., Reyna-Guerra, J.M., Jimenez-Chobillon, M.A., and Teran, L.M., Natural history and clinical presentation of aspirin-exacerbated respiratory disease: effect of gender, atopy, and family history, Annu. Allerg. Asthma Immunol., 2009, vol. 103, p. A71.

4. Memarpoor-Yazdi, M., Mahakia, H., and Zare-Zardini, H., Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus jujuba fruits, J. Funct. Foods, 2013, vol. 5, pp. 62–70. https://doi.org/10.1016/j.jff.2012.08.004

5. Fox, J.L., Antimicrobial peptides stage a comeback, Nat. Biotechnol., 2013, vol. 31, pp. 379–382. https://doi.org/10.1038/nbt.2572

6. Games, P.D., Silva, E.Q.G., Barbosa, M.D., Almeida-Souza, H.O., Fontes, P.P., de Magalhaes-Jr, M.J., Pereira, P.R.G., Prates, M.V., Franco, G.R., Faria-Campos, A., Campos, S.V.A., and Baracat-Pereira, M.C., Computer aided identification of a Hevein-like antimicrobial peptide of bell pepper leaves for biotechnological use, BMC Genomics, 2016, vol. 17, no. 112, p. 999. https://doi.org/10.1186/s12864-016-3332-8

7. Brogden, K.A., Antimicrobial peptides pore formers or metabolic inhibitors in bacteria?, Nat. Rev. Microbiol., 2005, vol. 3, pp. 238–250. https://doi.org/10.1038/nrmicro1098

8. Tam, J.P., Wang, S., Wong, K.H., and Tan, W.L., Antimicrobial peptides from plants, Pharmaceuticals, 2015, vol. 8, pp. 711–758.

9. Valente, A.P., de Paula, V.S., and Almeida, F.C.L., Revealing the properties of plant defensins through dynamics, Molecules, 2013, vol. 18, pp. 11311–11226.

10. De Beer, A. and Vivier, M.A., Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes, BMC Res. Not., 2011, vol. 4, p. 459.

11. Yang, Y.F., Cheng, K.C., Tsai, P.H., Liu, C.C., Lee, T.R., and Lyu, P.C., Alanine substitutions of noncysteine residues in the cysteine-stabilized alphabeta motif, Protein Sci., 2009, vol. 18, no. 7, pp. 1498–1506.

12. Finkina, E.I., Shramova, E.I., Tagaev, A.A., and Ovchinnikova, T.V., A novel defensin from the lentil Lens culinaris seeds, Biochem. Biophys. Res. Commun., 2008, vol. 371, pp. 860–865.

13. Lay, F.T., Brugliera, F., and Anderson, M.A., Isolation and properties of floral defensins from ornamental tobacco and petunia, Plant Physiol., 2003, vol. 131, pp. 1283–1293.

14. Lay, F.T. and Anderson, M.A., Defensins—components of the innate immune system in plants, Curr. Protein Pept. Sci., 2005, vol. 6, pp. 85–101.

15. Stotz, H.U., Thomson, J.G., and Wang, Y., Plant defensins: defense, development and application, Plant Signal. Behav., 2009, vol. 4, no. 11, pp. 1010–1012.

16. Wong, J.H. and Ng, T.B., Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase, Peptides, 2005, vol. 26, pp. 1120–1126.

17. Carvalho, A.O. and Gomesa, V.M., Plant defensins—prospects for the biological functions and biotechnological properties, Peptides, 2009, vol. 30, pp. 1007–1020.

18. Artlip, T.S. and Wisniewski, M.E., Induction of proteins in response to biotic and abiotic stresses, in Handbook of Plant and Crop Physiology, 2nd ed., Pessarakli, M., Ed., New York, NY: Marcel Dekker, 2001, pp. 657–679.

19. Carrasco, L., Vazquez, D., Hernandez-Lucas, C., Carbonero, P., and Garcia-olmedo, F., Thionins: plant peptides that modify membrane permeability in culture mammalian cells, Eur. J. Biochem., 1981, vol. 116, pp. 185–189.

20. Colilla, F.J., Rocher, A., and Mendez, E., Gamma-purothionins: amino acids sequence of two polypeptides of a new family of thionins from wheat endosperm, FEBS Lett., 1990, vol. 270, pp. 191–194.

21. Mendez, E., Moreno, A., Colilla, F., Pelaez, F., Limas, G.G., Mendez, R., Soriano, F., Salinas, M., and Haro, C., Primary structure and inhibition of protein synthesis in eukaryotic cells—free system of a novel thionin, gamma- hordothionin, from barley endosperm, Eur. J. Biochem., 1990, vol. 194, pp. 533–539.

22. Padovan, L., Segat, L., Tossi, A., Calsa, T., Ederson, A.K., Brandao, L., Guimaraes, R.L., Pandolfi, V., Pestana-Calsa, M.C., Belarmino, L.C., et al., Characterization of a new defensin from cowpea (Vigna unguiculata (L.) Walp.), Protein Pept. Lett., 2010, vol. 17, no. 3, pp. 297–304.

23. Kovalchuk, N., Li, M., Wittek, F., Reid, N., Singh, R., Shirley, N., Ismagul, A., Eliby, S., Johnson, A., and Milligan, A.S., Defensin promoters as potential tools for engineering disease resistance in cereal grains, Plant Biotechnol. J., 2010, vol. 8, no. 1, pp. 47–64.

24. Bahramnejad, B., Erickson, L.R., Atnaseo, C., and Goodwin, P.H., Differential expression of eight defensin genes of N. benthamiana following biotic stress, wounding, ethylene, and benzothiadiazole treatments, Plant Cell Rep., 20009, vol. 4, pp. 703–717. https://doi.org/10.1007/s00299-009-0672-8

25. De Beer, A. and Vivier, M.A., Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity, BMC Plant Biol., 2008, vol. 8, p. 75.

26. Maroti, G., Kereszt, A., Kondorosi, E., and Mergaert, P., Natural roles of antimicrobial peptides in microbes, plants and animals, Res. Microbiol., 2011, vol. 162, pp. 363–374. https://doi.org/10.1016/j.resmic.2011.02.005

27. Tajkarimi, M., Ibrahim, S., and Cliver, D., Antimicrobial herb and spice compounds in food, Food Control, 2010, vol. 21, pp. 1199–1218. https://doi.org/10.1016/j.foodcont.2010.02.003

28. Hayek, S.A., Gyawali, R., and Ibrahim, S.A., Antimicrobial natural products, in Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, 2013, vol. 2, pp. 910–921.

29. Stotz, H.U., Spence, B., and Wang, Y., A defensin from tomato with dual function in defense and development, Plant Mol. Biol., 2009, vol. 71, pp. 131–143.

30. Lin, P., Wong, J.H., and Ng, T.B., A defensin with highly potent antipathogenic activities from the seeds of purple pole bean, Biosci. Rep., 2010, vol. 30, no. 2, pp. 101–109.

31. Aerts, A.M., Carmona-Gutierrez, D., Lefevre, S., Govaert, G., Francois, I.E., Madeo, F., Santos, R., Cammue, B.P., and Thevissen, K., The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans, FEBS Lett., 2009, vol. 583, no. 15, pp. 2513–2516.

32. Portiele, R., Ayra, C., Gonzalez, E., Gallo, A., Rodriguez, R., Chacon, O., Lopez, Y., Rodriguez, M., Castillo, J., and Pujol, M., NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions, Plant Biotechnol. J., 2010, vol. 8, no. 6, pp. 678–690.

33. Amien, S., Kliwer, I., Marton, M.L., Debener, T., Geiger, D., Becker, D., and Dresselhaus, T., Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1, PLoS Biol., 2010, vol. 8, no. 6, e1000388.

34. Ahmed, M.M., Ibrahim, Z.S., Alkafafy, M., and El-Shazly, S.A., L-Carnitine protects against testicular dysfunction caused by gamma irradiation in mice, Acta Histochem., 2014, vol. 116, pp. 1046–1055.

35. Ozaki, Y., Wada, K., Hase, T., Matsubara, H., Natanishi, T., and Yoshizumi, H., Amino acid sequence of a purothionin analogue of barley flour, J. Biochem., 1980, vol. 87, pp. 549–555.

36. Van der Weerden, N.L., Lay, F.T., and Anderson, M.A., The plant defensin, nad1, enters the cytoplasm of Fusarium oxysporum hyphae, J. Biol. Chem., 2008, vol. 283, pp. 14445–14452.

37. Bradford, M.M., A rapid and sensitive method for the quantitation of. microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

38. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 15, pp. 680–685.

39. Alsop, G.M., Waggy, G.T., and Conway, R.A., Bacterial growth inhibition test, J. (Water Pollution Control Federation), 1980, vol. 52, pp. 2452–2456.

40. Valgas, C., De Souza, S.M., Smania, E.F.A., and Smania, A., Screening methods to determine antibacterial activity of natural products, Braz. J. Microbiol., 2007, vol. 38, pp. 369–380.

41. Mehrabian, S., Majd, A., and Majd, I., Antimicrobial effects of three plants (Rubiatinctotum, Carthamustinctorius and Juglansregia) on some airborne microorganisms, Aerobiologia, 2000, vol. 16, pp. 455–458.

42. Naz, R., Ayub, H., Nawaz, S., Ul, IslamZ., Yasmin, T., Bano, A., Wakeel, A., Zia, S., and Roberts, T.H., Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan, BMC Complem. Alternat. Med., 2017, vol. 17, p. 302.

43. Silverstein, K.A., Graham, M.A., Paape, T.D., and Vanden Bosch, K.A., Genome organization of more than 300 defensin-like genes in Arabidopsis, Plant Physiol., 2005, vol. 138, no. 2, pp. 600–610.

44. Tesfaye, M., Silverstein, K.A.T., Nallu, S., Wang, L., Botanga, C.J., et al., Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes, PLoS One, 2013, vol. 8, no. 3, e58992. https://doi.org/10.1371/journal.pone.0058992

45. Schutte, B.C., Mitros, J.P., Bartlett, J.A., Walters, J.D., Jia, H.P., Welsh, M.J., Casavant, T.L., and Mc Cray, P.B., Jr., Discovery of five conserved beta-defensin gene clusters using a computational search strategy, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, pp. 2129–2133.

46. Mergaert, P., Nikovics, K., Kelemen, Z., Maunoury, N., Vaubert, D., Kondorosi, A., and Kondorosi, E., A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs, Plant Physiol., 2003, vol. 132, pp. 161–173.

47. Graham, M.A., Silverstein, K.A., Cannon, S.B., and Vanden Bosch, K.A., Genome organization of defensin-like genes computational identification and characterization of novel genes from legumes, Plant Physiol., 2004, vol. 135, pp. 1179–1197.

48. Hanks, J.N., Snyder, A.K., Graham, M.A., Shah, R.K., Blaylock, L.A., Harrison, M.J., and Shah, D.M., Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules, Plant Mol. Biol., 2005, vol. 58, no. 3, pp. 385–399.

49. Vriens, K., Cammue, B.P.A., and Thevissen, K., Antifungal plant defensins: mechanisms of action and production, Molecules, 2014, vol. 19, pp. 12280–12303.

50. Picart, P., Pirttila, A.M., Raventos, D., Kristensen, H., and Sahl, H., Identification of defensin-encoding genes of Picea glauca: characterization of PgD5, a conserved spruce defensin with strong antifungal activity, BMC Plant Biol., 2012, vol. 12, p. 180.

51. Franco, O.L., Murad, A.M., Leite, J.R., Mendes, P.A., Prates, M.V., and Bloch, C., Identification of a cowpea gamma-thionin with bactericidal activity. FEBS J., 2006, vol. 273, pp. 3489–3497.

52. Osborn, R.W., De Samblanx, G.W., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenbo-rough, S., Rees, S.B., and Broekaert, W.F., Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae, FEBS Lett., 1995, vol. 368, no. 2, pp. 257–262.

53. Cammue, B.P., De Bolle, M.F., Terras, F.R., Proost, P., Van Damme, J., Rees, S.B., Vanderleyden, J., and Broekaert, W.F., Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J. Biol. Chem, 1992, vol. 267, no. 4, pp. 2228–33.

54. Segura, Al., Moreno, M., Molina, A., and Garcia-Olmedo, F., Novel defensin subfamily from spinach (Spinacia oleracea), FEBS Lett., 1998, vol. 435, nos. 2–3, pp. 159–162.

55. Chen, G.H., Hsu, M.P., Tan, C.H., Sung, H.Y., Kuo, C.G., Fan, M.J., Chen, H.M., Chen, S., and Chen, C.S., Cloning and characterization of a plant defensin VaD1 from azuki bean, J. Agric. Food Chem., 2005, vol. 53, no. 4, pp. 982–988.

56. Rogozhin, E.A., Oshchepkova, Y.I., Odintsova, T.I., Khadeeva, N.V., Veshkurova, O.N., Egorov, T.A., Grishin, E.V., and Salikhov, S.I., Novel antifungal defensins from Nigella sativa L. seeds, Plant Physiol. Biochem., 2011, vol. 49, no. 2, pp. 131–137.

Copyright© ICBGE 2002-2020 Coded & Designed by Volodymyr Duplij Modified 24.11.20