TSitologiya i Genetika 2019, vol. 53, no. 6, 86-87
Cytology and Genetics 2019, vol. 53, no. 6, 510–514 , doi: https://www.doi.org/10.3103/S0095452719060045

Characterization and Phylogenetic Analysis of the Complete Chloroplast Genome of Orinus kokonoricus (Poaceae), an Endemic Species from the Qinghai-Tibet Plateau

YUPING LIU, TING LV, TAO LIU, XU SU

  • Key Laboratory of Medicinal Plant and Animal Resources in the Qinghai-Tibet Plateau, School of Life Science, Qinghai Normal University, Xining 810008, China
  • Key Laboratory of Education Ministry of Environments and Resources in the Qinghai-Tibet Plateau, School of Life Science, Qinghai Normal University, Xining 810008, China

Orinus kokonoricus is an alpine perennial grass (Poaceae) endemic to the Qinghai-Tibet Plateau (QTP) in China, which has extremely important ecological and genetic values. To explore characterization and phylogenetic analysis of the complete chloroplast (cp) genome of O. kokonoricus, we first sequenced and assembled its cp genome with Illumina HiSeq4000 platform in the present study. The results showed that the complete cp genome of O. kokonoricus is 134,466 bp in length with a high AT content of 61.6% and displays a standard quadripartite structure including one large single copy region (LSC, 79,932 bp), one small single copy region (SSC, 12,490 bp) and two inverted repeat regions (IRA and IRB, 21,022 bp each). It totally encodes 137 genes containing 81 protein-coding genes, 45 tRNAs genes and eight rRNAs genes. Moreover, most of these genes occur in the single copy regions. Among all annotated genes of the cp genome of O. kokonoricus, none of them harbors introns. In addition, phylogenetic analysis based on 40 complete cp genome sequences of Poaceae revealed that O. kokonoricus is sister clade to the clade of Eragrostis species in Chloridoideae.

Keywords: Orinus kokonoricus; Poaceae; Complete chloroplast genome; Phylogenetic analysis; Qinghai-Tibet Plateau

TSitologiya i Genetika
2019, vol. 53, no. 6, 86-87

Current Issue
Cytology and Genetics
2019, vol. 53, no. 6, 510–514 ,
doi: 10.3103/S0095452719060045

Full text and supplemented materials

References

1. Gray, J.C., Genetic manipulation of the chloroplast genome, Biotechnology, 1989, vol. 12, no. 14, pp. 317–335.

2. Howe, C.J., Barbrook, A.C., Koumandou, V.L., Nisbet, R.E., and Symington, H.A., Evolution of the chloroplast genome, Philos. Trans. R. Soc. London, Ser. B: Biol. Sci., 2003, vol. 358, no. 1429, pp. 99–107.

3. Jansen, R.K., Cai, Z.Q., Raubeson, L.A., Daniell, H., Depamphilis, C.W., Leebens-Mack, J., Müller, K.F., Guisinger-Bellian, M., Haberle, R.C., Hansen, A.K., Chumley, T.W., Lee, S.B., Peery, R., McNeal, J.R., Kuehl, J.V., and Boore, J.L., Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 49, pp. 19369–19374.

4. Odintsova, M.S. and Yurina, N.P., Chloroplast genomics of land plants and algae, in Biotechnological Applications of Photosynthetic Protein: Biochips, Biosensors and Biodevices, US: Springer, 2006, pp. 57–72.

5. Chen, S.L. and Phillips, S.M., Orinus (Poaceae), in Flora of China, Wu, Z.Y. and Raven, P.H., Eds., Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, 2006, vol. 22, pp. 464–465.

6. Su, X., Wu, G.L., Li, L.L., and Liu, J.Q., Species delimitation in plants using the Qinghai–Tibetan Plateau endemic Orinus (Poaceae: Tridentinae) as an example, Ann. Bot., 2015, vol. 116, no. 1, pp. 35–48.

7. Su, X., Liu, Y.P., Wu, G.L., Luo, W.C., and Liu, J.Q., A taxonomic revision of Orinus (Poaceae) with a new species, O. intermedius, from the Qinghai–Tibet Plateau, Novon, 2017, vol. 25, no. 2, pp. 206–213.

8. Su, X., Yue, W., and Liu, J.Q., Germplasm collection and preservation of Orinus (Poaceae) in the Qinghai–Tibet Plateau, Plant Diver.Res., 2013, vol. 35, no. 3, pp. 343–347.

9. Li, H.X., Zhang, D.P., Hao, Y.Q., and Zhao, H.X., Analysis of microbial diversity of root microecosystem of Orinus kokonorica,J. Shenyang Normal Univ: Nat. Sci. Ed., 2016, vol. 34, no. 2, pp. 228–233.

10. Doyle, J.J. and Doyle, J.L., Isolation of plant DNA from fresh tissue, Focus, 1990, vol. 12, no. 1, pp. 13–15.

11. Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, no. 15, pp. 2114–2120.

12. Zerbino, D.R. and Birney, E., Velvet: algorithms for de novoshort read assembly using de Bruijn graphs, Genome Res., 2008, vol. 18, no. 5, pp. 821–829.

13. Lohse, M., Drechsel, O., Kahlau, S., and Bock, R., Organellar Genome DRAW–a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets, Nucleic Acids Res., 2013, vol. 41, pp. W575–W581.

14. Katoh, K. and Standley, D.M., . MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772–780.

15. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4, Sunderland, MA: Sinauer Associates. 2002.

16. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics. 2014, vol. 30, no. 9, pp. 1312–1313.

17. Yang, M., Zhang, X.W., Liu, G.M., Yin, Y.X., Chen, K.F., Yun, Q.Z., Zhao, D.J., Al-Mssallem, I.S., and Yu, J., The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.), PLoS One, 2010, vol. 5, no. 9. e12762.

18. Liu, Y.P., Su, X., Lu, T., Liu, T., and Chen, K.L., Characterization of the complete chloroplast genome sequence of Littledalea racemosa Keng (Poaceae: Bromeae), Conserv. Genet. Resour., 2018, vol. 10, no. 3, pp. 343–346.

19. Su, X., Liu, Y.P., Lu, T., Liu, T., and Zhu, D., Complete chloroplast genome of Psammochloa villosa (Poaceae), a pioneer grass endemic to sand dunes in northwest China, Conserv. Genet. Resour., 2017, vol. 10.