TSitologiya i Genetika 2019, vol. 53, no. 5, 90-91
Cytology and Genetics 2019, vol. 53, no. 5, 418–423, doi: https://www.doi.org/10.3103/S0095452719050128

Characterization of the complete chloroplast genome of an endemic perennial grass Orinus intermedius and its phylogenetic analysis in Poaceae

Xu Su, Yuping Liu, Ting Lv, Zhumei Ren

  1. Key Laboratory of Medicinal Plant and Animal Resources in the Qinghai-Tibet Plateau, School of Life Science, Qinghai Normal University, Xining 810008, China
  2. Key Laboratory of Education Ministry of Environments and Resources in the Qinghai-Tibet Plateau, School of Life Science, Qinghai Normal University, Xining 810008, China
  3. School of Life Science, Shanxi University, Taiyuan 030006, China

Orinus intermedius is an endemic perennial species occurring exclusively in the southeastern Qinghai-Tibet Plateau (QTP). It has particularly important ecological and genetic values, and some of its morphological characters are between O. thoroldii and O. kokonoricus. In the present study, we conducted the sequencing and assembly of its complete chloroplast (cp) genome using Illumina HiSeq4000 platform in order to discuss its characterization and phylogenetic position of this species. The results showed that the complete cp genome of O. intermedius is 134,296 bp in size with a high AT content of 61.6 %. The cp genome structure are standard quadripartite, which contains a pair of an inverted repeat (IRs, 21,024 bp each) separated by the small single copy (SSC, 12,478 bp) and large single copy (LSC, 79,770 bp) regions. It encodes 136 genes, including 81 protein-coding genes, 44 tRNAs genes and eight rRNAs genes. Most of these genes occur as a single copy. Moreover, there are no genes harbored introns among the annotated genes from the cp genome of O. intermedius. Phylogenetic analysis based on 41 complete cp genome sequences indicated that O. intermedius is sister clade to the clade of Eragrostis species in Chloridoideae.

Keywords: Poaceae; Orinus intermedius; Complete chloroplast genome; Phylogenetic analysis; Qinghai-Tibet Plateau

TSitologiya i Genetika
2019, vol. 53, no. 5, 90-91

Current Issue
Cytology and Genetics
2019, vol. 53, no. 5, 418–423,
doi: 10.3103/S0095452719050128

Full text and supplemented materials

References

1. Gray, J.C., Genetic manipulation of the chloroplast genome, Biotechnology, 1989, vol. 12, no. 14, pp. 317–335.

2. Howe, C.J., Barbrook, A.C., Koumandou, V.L., Nisbet, R.E., and Symington, H.A., Evolution of the chloroplast genome, Philos. Trans. R. Soc. Lond., B. Biol. Sci., 2003, vol. 358, no. 1429, pp. 99–107. https://doi.org/10.1098/rstb.2002.1176

3. Jansen, R.K., Cai, Z.Q., Raubeson, L.A., Daniell, H., Depamphilis, C.W., Leebens-Mack, J., Müller, K.F., Guisinger-Bellian, M., Haberle, R.C., Hansen, A.K., Chumley, T.W., Lee, S.B., Peery, R., McNeal, J.R., Kuehl, J.V., and Boore, J.L., Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 49, pp. 19369–19374. https://doi.org/10.1073/pnas.0709121104

4. Odintsova, M.S. and Yurina, N.P., Chloroplast genomics of land plants and algae, Biotechnol. Appl. Photosyn. Protein: Biochips, Biosensors, Biodevices, 2006, pp. 57–72.

5. Li, W.M., Ruf, S., and Bock, R., Constancy of organellar genome copy numbers during leaf development and senescence in higher plants, Mol. Genet. Genom., 2006, vol. 275, no. 2, pp. 185–192. https://doi.org/10.1007/s00438-005-0075-7

6. McNeal, J.R., Leebens-Mack, J.H., Arumuganathan, K., Kuehl, J.V., Boore, J.L., and DePamphilis, C.W., Using partial genomic fosmid libraries for sequencing complete organellar genomes, Biotechniques, 2006, vol. 41, no. 1, pp. 69–73. https://doi.org/10.2144/000112202

7. Sugiura, M., The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing, Photosynth. Res., 2001, vol. 70, no. 1, pp. 107–118.

8. Su, X., Liu, Y.P., Wu, G.L., Luo, W.C., and Liu, J.Q., A taxonomic revision of Orinus (Poaceae) with a new species, O. intermedius, from the Qinghai-Tibet Plateau, Novon, 2017, vol. 25, no. 2, pp. 206–213. https://doi.org/10.3417/2015047

9. Su, X., Wu, G.L., Li, L.L., and Liu, J.Q., Species delimitation in plants using the Qinghai-Tibetan Plateau endemic Orinus (Poaceae: Tridentinae) as an example, Ann. Bot., 2015, vol. 116, no. 1, pp. 35–48. https://doi.org/10.1093/aob/mcv062

10. Doyle, J.J. and Doyle, J.L., Isolation of plant DNA from fresh tissue, Focus, 1990, vol. 12, no. 1, pp. 13–15.

11. Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, no. 15, pp. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

12. Zerbino, D.R. and Birney, E., Velvet: algorithms for de novoshort read assembly using de Bruijn graphs, Genome Res., 2008, vol. 18, no. 5, pp. 821–829. https://doi.org/10.1101/gr.074492.107

13. Lohse, M., Drechsel, O., Kahlau, S., and Bock, R., Organellar genome DRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets, Nucleic Acids Res., 2013, vol. 41, pp. W575–W581. https://doi.org/10.1093/nar/gkt289

14. Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772–780. https://doi.org/10.1093/molbev/mst010

15. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods), version 4, Sunderland, MA: Sinauer Associates, 2002.

16. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, no. 9, pp. 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

17. Liu, Y., Su, X., Tao, T.L., and Chen, L.K., Characterization of the complete chloroplast genome sequence of Littledalea racemosa Keng (Poaceae: Bromeae), Conserv. Genet. Resour., 2018, vol. 10, no. 3, pp. 343–346.

18. Yang, M., Zhang, X.W., Liu, G.M., Yin, Y.X., Chen, K.F., Yun, Q.Z., Zhao, D.J., Al-Mssallem, I.S., and Yu, J., The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.), PLoS One, 2010, vol. 5, no. 9. e12762. https://doi.org/10.1371/journal.pone.0012762

19. Li, X.W., Gao, H.H., Wang, Y.T., Song, J.Y., Henry, R., Wu, H.Z., Hu, Z.G., Yao, H., Luo, H.M., Luo, K., Pan, H.L., and Chen, S.L., Complete chloroplast genome sequence of Magnolia grandiflora and comparative analysis with related species, Sci. China Life Sci., 2013, vol. 56, no. 2, pp. 189–198.

20. Li, X.J., Yang, Z.Y., Huang, Y.L., and Ji, Y.H., Complete chloroplast genome of the medicinal plant Paris polyphylla var. chinensis (Melanthiaceae), J. Trop. Subtrop. Bot., 2015, vol. 23, no. 6, pp. 601–613.

21. Li, X.W., Hu, Z.G., Lin, X.H., Li, Q., Gao, H.H., Luo, G.A., and Chen, S.L., High-throughput pyrosequencing of the complete chloroplast genome of Magnolia officinalis and its application in species identification, Yao Xue Xue Bao, 2012, vol. 47, no. 1, pp. 124–130.