TSitologiya i Genetika 2019, vol. 53, no. 4, 3-12
Cytology and Genetics 2019, vol. 53, no. 4, 267–275 , doi: https://www.doi.org/10.3103/S0095452719040091

Identification of Oryza sativa awn development regulatory genes orthologs in Triticinae accessions

Navalikhina A., Antonyuk M., Pasichnyk T., Ternovska T.

SUMMARY. Information on the genetic control of the awn development in the bread wheat is currently limited to the identification of three genes – Hd, B1, and B2 awnedness supressors, and no promotors have yet been identified. Another Gramineae species, Oryza sativa, has more that ten genes involved in the awn morphogenesis. This article presents the results of the wheat genome sequence analysis for the search of genes, orthologous to the known awn development regulators in rice – TOB1, ETT2 and DL. With bioinformatic methods, three genes TaTOB1, TaETT2, and TaDL are identified in bread wheat genome, their location is defined on the chromosomes of 2nd, 3rd and 4th homoeologous groups respectively. The polymorphisms between homoeoalleles of the genes located on A, B, and D subgenomes are described. Identified polymorphisms include variation in the length of the exons and intrones in all three genes, variation in the number of exons and intrones for the TaETT2 gene homoeoalleles, inversion of TaDL-B homoeoallele relative to the TaDL-A and TaDL-D, and inversion of TaETT2-B and TaETT2-D relative to the TaETT2-A. With the PCR method using primers designed to the sequence of the TaTOB1, the homoeoalleles of this gene were identified in the genomes Au, Ab, B, G, D, SSh, M, U, T of diploid, tetraploid, and hexaploid wheat species. The marker potential of two pairs of primers for the TaTOB1 gene is shown to study the genome structure of the introgressive wheat lines in relation to this gene.

Keywords: bread wheat, awns, awn development genes, Aegilops, wheat genome sequence analysis

TSitologiya i Genetika
2019, vol. 53, no. 4, 3-12

Current Issue
Cytology and Genetics
2019, vol. 53, no. 4, 267–275 ,
doi: 10.3103/S0095452719040091

Full text and supplemented materials

Free full text: PDF  

References

1. Dorofeev, V.F., Filatenko, A.A., Migushova, E.P., Udachin, R.A., and Iakubtsiner, M.M., Cultural Flora of USSR, Brezhnev, D.D., Ed., Leningrad: Kolos, 1979, pp. 239–269.

2. Goud, J.V. and Sadananda, A.R., Two new awn promoter genes in bread wheat, Genetics, 1978, vol. 43, pp. 12–16.

3. Antonyuk, M.Z., Prokopyk, D.O., Martynenko, V.S., and Ternovska, T.K., Identification of the genes promoting awnedness in the Triticum aestivum/Aegilops umbellulata inrogressive line, Cytol. Genet., 2012, vol. 46, no. 3, pp. 136–143. https://doi.org/10.3103/s009545-2712030024

4. Ternovska, T.K., Antonyuk, M.Z., and Martynenko, V.S., Genes promoters of awnedness in Triticinae genomes, Factory Eksper. Evol. Organ. Zb. Nauk. Prats., Kyiv: Logos, 2013, vol. 12, pp. 164–168.

5. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Appels, R., and Xia, X.C., Catalogue of Gene Symbols for Wheat, 2013.

6. Sourdille, P., Cadalen, T., Gay, G., Gill, B.S., and Bernard, M., Molecular and physical mapping of genes affecting awning in wheat, Plant Breed., 2002, vol. 121, pp. 320–324.

7. Yoshioka, M., Iehisa, J.C.M., Ohno, R., Kimura, T., Enoki, H., Nishimura, S., Nasuda, Sh., and Takumi, Sh., Three dominant awnless genes in common wheat: Fine mapping, interaction and contribution to diversity in awn shape 9and length, PLoS One, 2017, vol. 12, pp. 1–21. https://doi.org/10.1371/journal.pone.0176148

8. Prokopyk, D.O. and Ternovska, T.K., Homeotic genes and their role in development of morphological traits in wheat, Cytol. Genet., 2011, vol. 45, no. 1, pp. 41–54. https://doi.org/10.3103/s0095452711010099

9. Toriba, T. and Hirano, H.Y., The DROOPING LEAF and OsETTIN2 genes promote awn development in rice, Plant J., 2014, vol. 77, pp. 616–626. https://doi.org/10.1111/tpj.12411

10. Luo, J., Liu, H., Zhou, T., Gu, B., Huang, X., Shangguan, Y., Zhu, J., Li, Y., Zhao, Y., Wang, Y., Zhao, Q., Wang, A., Wang, Z., Sang, T., Wang, Z., and Han, B., An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice, Plant Cell, 2013, vol. 25, pp. 3360–3376. https://doi.org/10.1105/tpc.113.113589

11. Tanaka, W., Toriba, T., Ohmori, Y., Yoshida, A., Kawai, A., Mayama-Tsuchida, T., Ichikawa, H., Mitsuda, N., Ohme-Takagi, M., and Hirano, H-Y., The YABBY Gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet, Plant Cell, 2012, vol. 24, pp. 80–95. https://doi.org/10.1105/tpc.111.094797

12. Satoh, N., Itoh, J.I., and Nagato, Y., The SHOOTLESS2 and SHOOTLESS1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells, Genetics, 2003, vol. 164, no. 1, pp. 335–346. PMCID: PMC1462562.

13. Itoh, J.I., Kitano, H., Matsuoka, M., and Nagato, Y., Shoot organization genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice, Plant Cell, 2000, vol. 12, pp. 2161–2174.

14. Abe, M., Yoshikawa, T., Nosaka, M., Sakakibara, H., Sato, Y., Nagato, Y., and Itoh, J., WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining microRNA and transacting small interfering RNA accumulation in rice, Plant Physiol., 2010, vol. 154, pp. 1335–1346. https://doi.org/10.1104/pp.110.160234

15. Song, X., Wang, D., Ma, L., Chen, Z., Li, P., Cui, X., Liu, C., Cao, S., Chu, C., Tao, Y., and Cao, X., Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development, Plant J., 2012, vol. 71, pp. 378–389. https://doi.org/10.1111/j.1365-313X.2012.05001.x

16. Goncharov, N.P., Comparative-genetic analysis—a base for wheat taxonomy revision, Czech. J. Genet. Plant Breed., 2005, vol. 41 (special issue), pp. 52–55.

17. Prokopyk, D.O. and Ternovska, T.K., SSR-marking of genes taking part in control of awnedness in durum wheat (Triticum durum Desf.), Visn. Ukr. Tovar. Genet. Selec., 2010, vol. 8, no. 1, pp. 31–40.

18. Du, F., Guan, C., and Jiao, Y., Molecular mechanisms of leaf morphogenesis, Mol. Plant, 2018, vol. 11, pp. 1117–1134.

19. Prunet, N. and Meyerowitz, E.M., Genetics and plant development, Comptes Rendus Biologies, 2016, vol. 339, pp. 240–246. doi.org/ https://doi.org/10.1016/j.crvi.2016.05.003

20. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410.

21. Jin, J., Tian, F., Yang, D.-C., Meng, Y.Q., Kong, L., Luo, J., and Gao, G., PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants, Nucleic Acids Res., 2017, vol. 45, pp. D1040–D1045. https://doi.org/10.1093/nar/gkw982

22. Dvorak, J., Luo, M.-C., Gu, Y.Q., et al., Sequencing the Aegilops tauschii genome. http://aegilops.wheat. ucdavis.edu.

23. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T.L., Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinform., 2012, vol. 13, no. 134. https://doi.org/10.1186/1471-2105-13-134

24. Zhirov, E.G., Synthesis of a new hexaploid wheat, Tr. Prikl. Bot. Genet. Sel., 1980, vol. 68, pp. 14–16.

25. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 1989.

26. Korbie, D.J. and Mattick, J.S., Touchdown PCR for increased specificity and sensitivity in PCR amplification, Nat. Protoc., 2008, vol. 3, pp. 1452–1456. https://doi.org/10.1038/nprot.2008.133

27. Kidwell, M.G. and Lisch, D., Transposable elements as sources of variation in animals and plants, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, pp. 7704–7711.

28. Petersen, G., Seberg, O., Yde, M., and Berthelsen, K., Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum), Mol. Phylogenet. Evol., 2006, vol. 39, pp. 70–82. https://doi.org/10.1016/j.ympev.2006.01.023