TSitologiya i Genetika 2020, vol. 54, no. 2, 29-34
Cytology and Genetics 2020, vol. 54, no. 2, 111–115, doi: https://www.doi.org/10.3103/S009545272002005X

The frequency of chromosome aberrations in somatic cells of ukrainian buffaloes (Bubalus bubalis L.)

Dzitsiuk V., Typylo K.H.

  • Institute of Animal Breeding and Genetics nd.a. M.V. Zubets of NAAS, Chubynske, Ukraine

SUMMARY. The routine, GTG- and Ag-methods of metaphase chromosome analysis were used to determine the spontaneous frequency of chromosomal aberrations and the level of chromosomal variability in the lymphocytes of Ukrainian buffaloes (Bubalus bubalis L.). It was established that within the studied animal population the diploid set of chromosomes consisted of 50 chromosomess
(2n = 50,XX; 2n = 50,XY). The individual chromosomal variability was discovered for several animals in the form of the cells with aneuploid and polyploid sets of chromosomes as well as of the structural autosomal aberrations. In particular, using the method of differenti-ally dyed chromosomes, it was found that individual females had a duplicate in one of the chromosomes of the second pair, an X-monosomia, and a chimerism by sex chromosomes. The total chromosomal instability level in peripheral blood lymphocytes averaged at 14,35 ± 2,03 % due to the damaged states of chromosomal and chromatid types. The application of Ag-method helped reveal the active NOR in six pairs of chromosomes (3p, 4p, 6q, 21q, 23q, 24q).

Keywords: River Buffalo, karyotype, chromosomes, aberrations

TSitologiya i Genetika
2020, vol. 54, no. 2, 29-34

Current Issue
Cytology and Genetics
2020, vol. 54, no. 2, 111–115,
doi: 10.3103/S009545272002005X

Full text and supplemented materials

References

1. Castello, J.R., Bovids of the World: Antelopes, Gazelles, Cattle, Goats, Sheep, and Relatives, Princeton Univ. Press, 2016, pp. 596–601.

2. Guzeev, Y.V., Melnyk, J.V., Gladyr, O.O., and Zinovieva, N.A., Polymorphism of a population of Ukrainian river buffaloes (river buffalo) for microsatellite DNA loci, Breed. Genet. Anim., 2016, vol. 51, pp. 276–281.

3. Pournourali, M., Tarang, A., and Mashayekhi, F., Chromosomal analysis of two buffalo breeds of Mazaniand Azeri from Iran, Iran. J. Vet. Sci. Technol., 2015, vol. 7, no. 1, pp. 22–31. https://doi.org/10.22067

4. Burgos, M., Rapid, A., Jimenez, R., and Diaz De La Guardia, R., Simple and reliable combined method for G-banding mammalian and human chromosomes, Stain. Technol., 1986, vol. 61, no. 5, pp. 257–260. https://doi.org/10.3109/10520298609109950

5. Supanuam, P., Tanomtong, F., Jantarat, S., Kakampuy, W., Kaewsri, S., and Kenthao, A., Standardized karyotype and idiogram of Thai native swamp buffalo, Bubalus bubalis (Artiodactyla, Bovidae) by convention staining, G-banding, C-banding and NOR-banding techniques, Thai J. Genet., 2010, vol. 3, no. 1, p. 83.https://doi.org/10.14456/tjg.2010.8

6. Iannuzzi, L., Standard karyotype of the river buffalo (Bubalus bubalis L. 2n = 50). Report of the committee for the standardization of banded karyotypes of the river buffalo, Cytogenet. Cell Genet., 1994, vol. 67, no. 2, pp. 102–113. https://doi.org/10.1159/000133808

7. Shaari, A.L., Jaoi-Edward, M., Loo, S.S., Salisi, M.S., Yusoff, R., Nurul Izza Ghani, A., Mohd Zamri Saad, M.Z., and Ahmad, H., Karyotypic and mtDNA based characterization of Malaysian water buffalo, BMC Genetics, 2019, vol. 20, no. 37, pp. 1–6.https://doi.org/10.1186/s12863-019-0741-0

8. Alikhani, J., Mohammadi, G., and Shariati, G., Cytogenetic identification of Khuzestani water Buffalo, Vet. Res. Forum, 2018, vol. 9, no. 4, pp. 357–360. https://doi.org/10.30466/vrf.2018.33075

9. Patel, A.V., Patel, R., Parth, B., Shah, R., and Priti, P., Cytogenetic studies of the dairy bulls, Wayamba J. Anim. Sci., 2011, vol. 20, pp. 190–194.

10. Kotikalapudi, R., Patel, R.K., Nagaraju Naik Sugali, and Kommuri, M., Structural chromosomal mosaicism due to partial monosomy (3q-) in a Murrah buffalo (Bubalus bubalis) bull, Int. J. Adv. Res. Dev., 2016, vol. 1, no. 9, pp. 25–27.

11. Patel, R.K., Kotikalapudi, R., Medidi, H., Nagaraju Naik Sugali, and Sancar, S., Structural chromosome mosaicism in peripheral blood cells of Murrah buffalo (Bubalus bubalis), J. Chem. Biol. Phys. Sci., 2015, vol. 5, no. 4, pp. 4224–4230. http://www.jcbsc.org/.

12. Yadav, B.R., Kumar, R., Tomar, O.S., and Balain, D.S., Monosomy X and gonadal dysgenesis in a buffalo heifer (Bubalus bubalis), Theriogenology, 1990, vol. 34, pp. 99–105. https://doi.org/10.1016/0093-691x(90)90580-m

13. Iannuzzi, L., Di Meo, G.P., Perucatti, A., Ciotola, F., Incarnato, D., Di Palo, R., Peretti, V., Campanile, G., and Zicarelli, L., Free martinism in river buffalo: clinical and cytogenetic observations, Cytogenet. Genome Res., 2005, vol. 108, pp. 355–358. https://doi.org/10.1159/000081531

14. Whitacre, L., Hoff, J., and Schnabel, R., Elucidating the genetic basis of an oligogenic birth defect using whole genome sequence data in a non-model organism, Bubalus bubalis,Sci. Rep., 2017, vol. 7, no. 39 719. https://doi.org/10.1038/srep39719

15. Albarella, S., Ciotola, F., D’Anza, E., Coletta, A., Zicarelli, L., and Peretti, V., Congenital malformations in river buffalo (Bubalus bubalis), Animals (Basel), 2017, vol. 7, no. 2, pp. 1–15. https://doi.org/10.3390/ani7020009

16. Yimer, N., Chromosomal anomalies and infertility in farm animals: a review, Pertanika J. Trop. Agricult. Sci., 2014, vol. 37, no. 1, pp. 1–18. http://psasir.upm.edu.my/ id/eprint/36786.

17. Patel, R.K., Singh, K.M., Soni, K.J., and Chauhan, J.B., Novel cytogenetic finding: an unusual X/X translocation in Mehsana buffalo (Bubalus bubalis), Cytogenet. Genome Res., 2006, vol. 115, pp.186–188.https://doi.org/10.1159/000095241

18. Chauhan, J., Patel, R., and Singh, K., Impact of a novel cytogenetic finding (unusual X;X translocation) on fertility of a buffalo bull (Bubalus bubalis), Buffalo Bull, 2009, vol. 28, no. 3, pp. 151–153.

19. Mohammadi, G., Sariati, G., and Alikhani, J., Cytogenetic identification of Khuzestani water buffalo, Vet. Res. Forum, 2018, vol. 9, no. 4, pp. 357–360. https://doi.org/10.30466/vrf.2018.33075

20. Sanghamitra, K., Patel, R.K., Sambasiva Rao, K.R.S., and Singh, K.M., Preliminary study on detection of fragile site on chromosomes of sub-fertile Murrah buffalo bull, Hary. Vet., 2004, vol. 43, pp. 68–71.

21. Iannuzzi, L., Di Meo, G., Perucatti, A., and Ferrara, L., The high resolution G- and R-banding pattern in chromosomes of river buffalo (Bubalus bubalis L.), Heriditas, 1990, vol. 112, pp. 209–215.

22. Nastyukova, V.V., Stepanova, E.I., and Glazko, V.I., Cytogenetic effects in children under different conditions of exposure to small doses of radiation, Cytol. Genet., 2002, no. 6, pp. 38–45.

23. Oraby, H.A., NahasE.l., de Hondt S.M., El Ghor H.A., and Samad M. Assignment of PCR markers to river buffalo chromosomes, Genet. Select. Evol., 1998, vol. 30, no. 1, pp. 71–78.https://doi.org/10.1186/1297-9686-30-1-71

24. Iannuzzi, L., The water buffalo: evolutionary, clinical and molecular cytogenetics, Ital. J. Anim. Sci., 2016, vol. 6, no. 2, pp. 227–236.

25. El Hondt, H.A., Soussa, S.F., Ghor, A.El., and Hassan, A.A., Assignment of new loci to river buffalo chromosomes confirms the nature of chromosomes 4 and 5, J. Anim. Breed. Genet., 2005, vol. 116, pp. 21–28. https://doi.org/10.1111/j.14390388.1999.00167.x

26. Degrandi, T.M., Pita, S., Panzera, Y., de Oliveira, E.H., Marques, J.R., Figueiró, M.R., Marques, L.C., Vinadé, L., Gunski, R.J., and Garnero, A.V., Karyotypic evolution of ribosomal sites in buffalo subspecies and their crossbreed, Genet. Mol. Biol., 2014, vol. 37, no. 2, pp. 375–380. https://doi.org/10.1590/S1415-47572014000300009