Tsitologiya i Genetika, 2025, vol. 59, no. 3, 60–83. https://cytgen.com/en/2025/60-83N3V59.htm Dubrovna et al. « GENETIC MODIFICATION OF WHEAT TO INCREASE ITS DROUGHT TOLERANCE»

Increasing drought tolerance of wheat via genetic transformation

| Improved traits in transgenic plants | Reference

Table

Gene and its origin	Product	Function	Improved traits in transgenic plants	Reference
	1	Functional genes		
		Genes, encoding osmoprote	ectors	
VaP5CS (Vigna aconitifolia)	delta-1- pyrroline-5- carboxylate- synthetase (P5CS)	Proline synthesis via glutamate. Protection from oxidative stress, support for cell turgor and stability of membranes and proteins, decrease in damage to cell structures and decrease in ROI level.	malondialdehyde, and higher stability of cellular membrane.	Vendruscolo et al., 2007; Pavei et al., 2016; De Lima et
AtOAT (Arabidopsis	ornithine-δ- aminotrans-	Proline synthesis via ornithine. Protection from oxidative stress, support for cell turgor	survival rate, higher activity of	al., 2019 Anwar et al., 2021
thaliana) MtOAT	ferase (OAF)	and stability of membranes and proteins, decrease in damage to cell structures and decrease in ROI level.	Larger weight and length of the	Dubrovna et
(Medicago truncatula)			roots, better photosynthetic activity, increased productivity.	al., 2021; Mykhalska et al., 2021
AtProDH (Arabidopsis thaliana)	proline dehydrogenase (ProDH)	Proline catabolism. Support for the energy balance of cells, regulation of redox homeostasis, ROI detoxication.	·	Dubrovna et al., 2020, 2022a,b
BADH (Atriplex hortensis)	betaine aldehyde	Synthesis of glycine betaine. Catalizes the transformation of betaine aldehyde into glycine betaine. Osmotic and antioxidant	proline, and level of soluble sugar.	Wang et al., 2010a,b

	dehydrogenase (BADH)	protection, stabilization of membranes and proteins, support for water balance and photosynthetic activity.		
betA (Escherichia coli)	choline dehydrogenase (betA)	Synthesis of glycine betaine. Catalyzes the transformation of choline into betaine aldehyde. Osmotic and antioxidant protection, stabilization of membranes and proteins, support for water balance and photosynthetic activity.	proline, and level of soluble sugar. Better germination and biomass of plants, better developed roots.	He et al., 2011
mtlD (Escherichia coli)	Manitol-1- phosphate dehydrogenase (mtlD)	Manitol synthesis. Catalyzes the reverse transformation of Fru-6-phosphate into manitol-1-phosphate. Osmotic and antioxidant protection, stabilization of membranes and proteins, support for photosynthetic activity.	biomass, height of plants, and length of the flag leaf.	Abebe et al., 2003
TPS1, TPS2 (Saccharom yces cerevisiae)	Trehalose-6- phosphate synthase (TPS1), trehalose-6- phosphate phosphatase (TPS2)	Trehalose synthesis. TPS1 catalyzes the formaiton of trehalose-6-phosphate (T6P), TPS2 transforms T6P into trehalose. Protection from osmotic and oxidative stress, stabilization of proteins and membranes, regulation of metabolism processes.	the length of the spikelet, height of plants, number and weight of grain from the main spikelet.	Kvasko et al., 2020
		Genes, encoding cold-shock p	proteins	
SeCspA, SeCspB (Escherichia coli)	synthetic bacterial proteins (cold-	Enhance adaptation to water deficit. I Support for cell turgor, stabilization of membranes and cell metabolism. Improved water balance.		

	shock proteins, Csp)		grain yield in the field (only for SeCspA).	
		Genes, encoding proteins of late	embryogenesis	
HVA1 (Hordeum vulgare)	protein (HORDEUM VULGARE	Molecular chaperone. Support for structures of proteins and membranes, turgor pressure, higher efficiency of	larger weight of roots, and total	Sivamani et al., 2000
	ALEURONE1) (HVA1)	water usage and photosynthetic activity, decrease in ROI level.	Higher efficiency of water usage, larger height of plants, greater biomass accumulation, grain yield.	Bahieldin et al., 2005
			Higher relative content of water. Higher germination of seeds and length of the roots. Higher airway permeability and photosynthetic activity. Lower outflow of electrolytes and better stability of membranes.	Habib et al., 2022
			Higher percentage of seed germination, better growth of shoots, biomass accumulation, activity of nitrate reductase. Higher photosynthetic activity and yield.	Chauhan, Khurana, 2011
			Greener leaves, better growth, and developed root system. Improved regulation of TF DREB and NAC, ferritin, glutathione-S-transferase.	Samtani et al., 2022
		Genes, encoding transport prot	eins and ions	
TdPIP2;1 (Triticum durum)	protein of inner plasma membrane (PIP2;1)	Aquaporin. Regulation of water transportation and closing of airways, control of cell homeostasis, higher stability of cell membranes.	biomass. Activation of antioxidant	-

TaNHX2	protein of	Transporter of K ⁺ . Takes part in	Higher survival rate. Higher relative	Li et al., 2024
(Triticum	vacuolar K ⁺ /H ⁺	homeostasis of K ⁺ , turgor generation.	content of water. Increase in the size of	,
aestivum)	antiporter	Regulates the airway aperture, mediating	grain and 1,000 grain weight. Increase	
		active release of potassium from	in the yield.	
		vacuoles.	-	
		Genes, encoding proteins and enzymes	s — ROI absorbents	
TaNRX1	protein	Regulates the activity of catalase,	Larger weight and length of roots,	Zhang et al.,
(Triticum	nucleoredoxin	enhances its detoxification ability, and	higher survival rate, content of	2021
aestivum)	(NRX)	protects antioxidant enzymes from ROI-	chlorophyll, proline, sugar,	
		induced oxidative stress.	photosynthesis productivity and	
			activity of antioxidant enzymes.	
MsALR	aldose	Metabolization of cytotoxic substances,	1 0	Fehér-Juhász
(Medicago	reductase	obtained by peroxide oxidation of lipids,	greater biomass accumulation.	et al., 2014
sativa)	(ALR)	participation in the support for water		
		balance.		
TaPRX-2A	peroxidase	Oxidation of phenol substances to	Higher activity of antioxidants and	Su et al., 2023
(Triticum	(PRX)	decrease the level of H_2O_2 .	decrease in ROI content, increase in	
aestivum)		Strengthening of cell walls, regulation of		
		growth and development.	and ABA. Higher survival rate, longer	
			shoots, and higher relative content of	
			water.	
				7
TaFER-5B	protein ferritin	Accumulation and preservation of iron,		Zang et al.,
(Triticum	(FER)	transformation of toxic Fe ²⁺ into non-	roots, lower damage to the membrane,	2017
aestivum)		toxic chelate complex. Neutralization of	better photosynthetic activity.	
		free radicals, prevention of the formation		
		of hydroxyl radicals. Support for the		
		stability of cell structures and		
		membranes, decrease in ROI amount.	11 , .	
		Genes, encoding the cellular w	vati proteins	

TaEXPA2 (Triticum aestivum)	protein α- expansin (EXP)	Extension of the cellular wall. Stabilization of cellular structures, support for water balance.	velocity, and the ability to keep water. Higher activity of antioxidant enzymes. Extensive formation of side roots.	Yang et al., 2020a
		Genes, encoding the enzymes, related to		
PEPC (Zea mays)	phosphoenolpy ruvate carboxylase (PEPC)	Control of primary fixation of CO ₂ in plants with C4 photosynthesis Activation of metabolic pathways, preservation of energy balance. Enhanced efficiency of water usage and photosynthetic activity.	Higher content of proline, soluble sugar, and protein. Higher efficiency of water usage and photosynthesis velocity, biomass, number and weight of grain. Higher level of proteins, related to photosynthesis and synthesis of aminoacids.	Qin et al., 2016
PEPC, PPDK (Zea mays)	phosphoenolpy ruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK)	PPDK generates phosphoenolpyruvate (PEP) for CO ₂ fixation. Supports photosynthetic activity under low availability of CO ₂ and regulates energy balance.	Improves drought resistance, enhances photosynthesis productivity and yield.	Zang et al., 2014
		Genes, encoding phytohol	rmones	
IPT (Agrobacteri um tumefaciens)	isopentenyl transferase (IPT)	Synthesis of cytokinins. Support for the stability of cellular structures, control of growth and development.	Improved drought resistance, slower	Beznec et al., 2021
		Genes, encoding proteins-	receptors	
TaPYL4 (Triticum aestivum)	Protein (PYRABATIN RESISTANCE	ABA receptor, regulates airway closing.	Smaller airway opening and water loss. Higher efficiency of photosynthesis and grain yield.	

	1-LIKE), (PYL)			
	(1 1 L)	Regulatory genes	<u></u>	
		Transcription facto		
		DREB/CBF		
AtDREB1A (Arabidopsis thaliana)	protein (DEHYDRATI ON RESPONSIVE ELEMENT BINDING, DREB)	Activates the expression of genes, controlling resistance to low temperatures. Related to the regulation of sugar content, proline, and chlorophyll.	system, higher total number of	i et al., 2004
			Higher relative content of water, chlorophyll, sugar, and proline.	Noor et al., 2018
TaDREB1A (Triticum aestivum)		Activates the expression of genes, controlling resistance to low temperatures and drought. Supports stability of cell membranes. Supports the increase in the relative content of water, chlorophyll, and soluble sugars.	Higher frequency of seed germination, length of shoots and roots, higher relative content of water, proline, and chlorophyll, higher yield.	Mehmood et al., 2020
TaDREB2, TaDREB3 (Triticum		TaDREB2 activates the expression of genes, promoting the adaptation to dehydration and salinization. Regulates	delayed blossoming, and lower yield of grain	Morran et al., 2011
aestivum)		water balance and decreases transpiration. TaDREB3 regulates the expression of genes, responsible for adaptation to low temperatures. Promotes protection of cell	Higher survival rate and yield.	Shavrukov et al., 2016

		membranes and improves osmotic regulation.		
GmDREB1 (Glycine max)		Activates the expression of genes, promoting the adaptation to dehydration and low temperatures. Supports the	Improved drought resistance, more leaves and roots, and high content of soluble sugar.	1
		stability of cell membranes, regulates the content of soluble sugar, proline, and chlorophyll.	Higher yield of grain in the field. Lower damage to membranes and improved osmotic adaptation.	Zhou et al., 2020
GhDREB Gossypium hirsutum		Activates the expression of genes, promoting the adaptation to drought, salinization, and low temperatures. Regulates the accumulation of soluble sugar, proline, chlorophyll.	chlorophyll content	Gao et al., 2009
TaCBF5L (Triticum aestivum)	protein C-REPEAT BINDING FACTOR, CBF	Regulates the expression of genes, controlling drought and frost resistance. Promotes the biosynthesis of osmoprotectors, enhances metabolism of carbohydrates.	Higher total biomass and grain yield.	Yang et al., 2020b
GmTDN1 (Glycine max)	DREB-like protein (TOTAL DIGESTIBLE NUTRIENTS, TDN)	Regulates the total amount of digestible nutrients. Improves the efficiency of photosynthetic processes. Promotes the activation of antioxidant enzymes, which decreases ROI rate.	Improved drought resistance, larger plant root mass. Higher yield of grain.	Zhou et al., 2022
TaRAP2.1L mut (Triticum aestivum)	modified DREB-like protein (RELATED TO P2.1, RAP2.1)	Regulates the activity of genes, related to stress response to drought, water balance and lower oxidative stress.	Enhanced ability to survive under drought, activation of stress-related genes. Higher height of plants, lower grain yield.	Amalraj et al., 2016

		ERF		
TaSHN1	protein	Regulates the genes of cuticle	Lower density of airways and water	Bi et al., 2018
(Triticum	SHINE1	biosynthesis, ensures the stability of cell	loss, higher accumulation of alkanes.	
aestivum)	(SHN)	membranes, decreases airway density.		
TaERF3	protein	Activates the transcription of genes,	Higher survival indices and decreased	Rong et al.,
(Triticum	(ETHYLENE	responding to drought. Affects the	water loss. Higher accumulation of	2014
aestivum)	RESPONSIVE	decrease in airway opening and decreases	proline and chlorophyll, lower content	
	FACTOR,	transpiration velocity.	of H ₂ O ₂ and airway permeability.	
	ERF)		Higher rate of ABA and expression of	
			genes, responding to the stress	
		WRKY		
TaWRKY2	protein of	Activates the transcription of genes of	Higher survival rate, content of	Gao et al.,
(Triticum	WRKY domain	osmoprotectors, antioxidants and	proline, soluble sugars, and	2018
aestivum)		proteins, stabilizing cell membranes.	chlorophyll. Lower water loss. Higher	
		Promotes lower water loss, support for	total biomass, length of panicle,	
		high photosynthetic activity, decrease in ROI.	amount, and yield of grain.	
AtWRKY30		Activates the transcription of genes of	Higher biomass, photosynthesis,	El-Esawi et
(Arabidopsis		antioxidant protection and membrane	relative water content, proline, content	al., 2019
thaliana)		stabilizers. Promotes the decrease in ROI,	of soluble proteins and sugars, activity	
		supports photosynthetic activity.	of antioxidant enzymes.	
		NAC		
TaNAC69	protein (NAM/	Activates genes of response to drought,	Higher weight of shoots and roots.	Xue et al.,
(Triticum	TAF1-2/ CUC2)	, ,	Enhanced expression of stress-induced	2011
aestivum)	(NAC)	antioxidant protection. Promotes the	genes.	
		accumulation of osmoprotectors, such as		
		soluble sugars and proline.		
OsSNAC1		Activates the expression of genes,	Higher content of water and	Saad et al.,
(Oriza		responsible for osmoregulation and	chlorophyll in leaves, larger fresh and	2013
sativa)		support for water balance. Participates in	dry biomass.	

		the transmission of auxin signals, supports photosynthetic activity.		
		bZIP		
TaABL1 (Triticum aestivum)	protein (ABI- LIKE1, ABL1)	Activates genes, controlling transpiration and water balance. Participates in closing airways.	Enhanced response to ABA and accelerated closing of airways, higher expression of stress-responsing genes.	Xu et al., 2014
TabZIP2 (Triticum aestivum)	protein (BASIC LEUCINE ZIPPER, bZIP)	A component of ABA signalling pathway, controls the rebuilding of the flows of carbohydrates and nutrients in response to drought. Enhances the efficiency of water usage, improves photosynthetic activity, decreases ROI level.	Fewer spikelets and kernel, larger weight of a kernel.	Luang et al., 2018
TaFDL2-1A (Triticum aestivum)	Protein (FLOWERING DATE-LIKE 2, FDL2)	Activates genes of antioxidants, regulates water balance and stability of cellular membranes. Participates in ABA biosynthesis and removal of ROI.	Higher activity of antioxidant enzymes, higher absorption of ROI.	Wang et al., 2022
		HD-Zip		
TaHDZipI- 5 (Triticum aestivum)	protein (HOME- ODOMAIN LEUCINE ZIPPER, HDZip)	Regulates the accumulation of osmoprotectors and the activity of antioxidants. Participates in the stabilization of membranes and promotes a decrease in water loss.	in the size and biomass of plants, delayed blossoming, and decreased grain yield.	Yang et al., 2018
HaHB4 (Heliánthus ánnuus)	protein (HOMEOBOX 4, HB4)	Activates the genes, which help retain water and decrease transpiration. Supports the stability of cellular membranes, promotes the accumulation of osmoprotectors, decreases the level of ROI. Inhibits the consumption of ethylene.	Higher number of spikes on a shoot, more shoots and fertile flowers, higher	González et al., 2019

AtHDG11	protein	Enhances the expression of genes,	Higher yield, higher content of proline,	Li et al., 2016
(Arabidopsis	(HOMEODO	participating in the ABA synthesis and	better photosynthesis, lower density of	ŕ
thaliana)	MAIN	calcium signalization. Supports	airways, lower velocity of water loss	
,	GLOBAROUS	photosynthetic activity, decreases the	and higher activity of catalase and	
	11, HDG11)	level of ROI. Promotes the growth of	superoxide dismutase.	
	,	roots and decrease in airway density.	•	
		ASR		
TaASR1-D	protein	Regulates the homeostasis of ROI.	Higher indices of survival rate, better	Qiu et al.,
(Triticum	(ABSCISIC	Stimulates the activity of antioxidant	ability to retain water. Enhanced	2021
aestivum)	ACID-	enzymes, which decreases the ROI level.	antioxidant ability and sensitivity to	
	STRESS-	Promotes the decrease in water loss and	ABA, lower yield of grain.	
	RIPENING 1),	maintenance of water balance of cells.		
	ASR1			
		bHLH		
TabHLH49	protein	Regulates the expression of the dehydrin	Better growth, lower content of	Liu et al.,
(Triticum	(BASIC	gene WZY2, decreasing the water loss via	malondialdehyde, higher relative	2020
aestivum)	HELIX-LOOP-	airways and enhancing the	content of water and chlorophyll.	
	HELIX,	osmoregulation. Enhances the activity of		
	bHLH)	antioxidant enzymes, impacts the		
		morphological characteristics of plants.		
		BES/BZR		
TaBZR2	protein	Participates in the signalization of	Higher survival rates, higher content of	Cui et al.,
(Triticum	(BRASSINAZ	brassino-steroids. Activates the	proline, slower leaf roll, lower level of	2019
aestivum)	OLE-	expression of glutathione-S-transferase-1	electrolite release, and the content of	
	RESISTANT	to neutralize O_2 , enhances photosynthetic	malondialdehyde.	
	2, BZR2)	activity of plants.		
		NF-Y		<u> </u>
TaNF-YB4	protein of	Activates genes of response to water	Increase in the number of spikelets in	Yadav et al.,
(Triticum	subunit NF-YB	deficit. Regulates the signalling pathways	the main spike.	2015
aestivum)	(NUCLEAR	of ABA, growth of roots, shoots, leaves.		
		Promotes the decrease in water loss,		

	FACTOR GAMMA)	enhances the stability of cellular membranes.		
TaNF-YA7-	protein of	Activates genes of response to water	Larger length of the shoot and root,	Zhao et al.,
5B	subunit NF-YA	deficit. Regulates cellular homeostasis of	biomass. Faster closing of airways and	2022
(Triticum	(NUCLEAR	ROI, closing of airways, promotes	smaller loss of water. Higher content	
aestivum)	FACTOR	retaining water in the leaves, activates the	of proline and soluble sugar, lower	
	GAMMA)	genes of osmoprotectors, enhances the	content of malondialdehyde and ROI.	
		photosynthesis efficiency.	Higher productivity of photosynthesis.	
		MYB		
TaPIMP1	protein	Regulates stress-protective genes in the	Higher efficiency of water usage,	Zhang et al.,
(Triticum	(PIP-TYPE	signalling pathway of ABA - salicylic	survival rates, proline content.	2012
aestivum)	MEMBRANE	acid. Maintains water balance and		
	PROTEINS)	enhances the efficiency of water usage.		
		Promotes the accumulation of		
		osmoprotectors.		
TaMpc1-D4	protein (MYB	Regulates drought resistance negatively,	A decrease in expression increased the	Li et al., 2020
(Triticum	protein colorless	\mathcal{E}	relative content of water, proline, and	
aestivum)	1, Mpc1)	and the antioxidant system.	the activity of antioxidant enzymes	
		Proteinkinases		
TaPEPKR2	protein, related	Controls metabolism of carbon.	Better growth and higher	Zang et al.,
(Triticum	to	Participates in the regulation of	resistance to dehydration, larger total	2018
aestivum)	phosphoenolpyr	metabolism of phosphoenolpyruvate	length of the roots.	
	uvate	(PEP) and signalling transduction.		
	carboxylase,			
	PEPC			
TaCIPK19	protein	Participates in the signalling	Enhanced ability to absorb ROI.	Wu et al.,
(Triticum	CBL-I	transduction, mediated by calcium, ROI		2023
aestivum)	CBL-INTER	absorption, and regulation of signalling		
		cascades.		

TaCIPK23 (Triticum aestivum)	ACTING PROTEIN KINASE (CIPK)	Participates in calcium-mediated signalling transduction, airway closing, maintenance of cellular and ion homeostasis, water balance.	1		et	al.,
OTS1 (Arabidopsis thaliana)	protein of cysteine SUMO protease	Post-translation modification of protein. Promotes specific interprotein interactions and stabilizes protein complexes. Regulates the transmission of	Delayed aging, higher relative content of water, chlorophyll, and photosynthesis velocity. Lower	Le Ral., 20		et
	(OVERLY TOLERANT TO SALT-1)	ABA signals, water balance, aging, protection from ROI.				

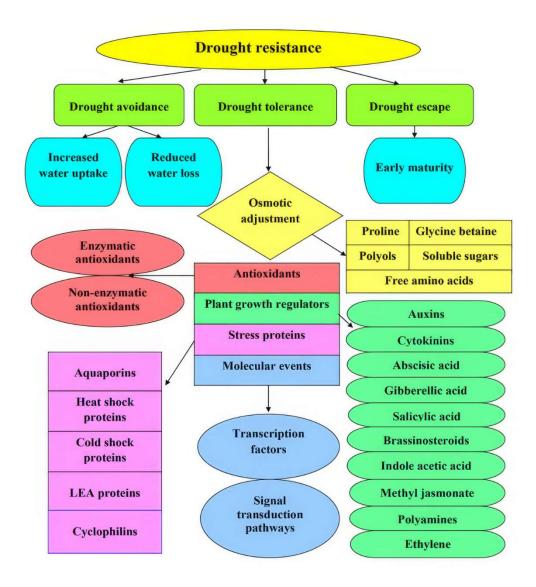


Fig. 1. Mechanisms of plant resistance to drought.

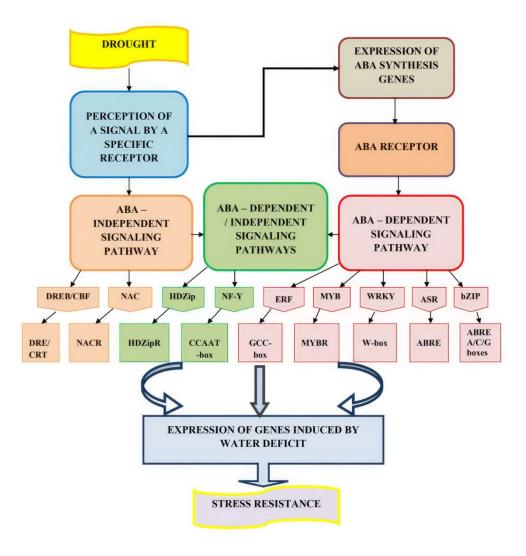


Fig. 2. TFs that function in ABA-dependent and ABA-independent pathways of water deficit response and have been used in the genetic engineering of wheat to improve its drought tolerance.