TSitologiya i Genetika 2021, vol. 55, no. 6, 3-14
Cytology and Genetics 2021, vol. 55, no. 6, 499–509, doi: https://www.doi.org/10.3103/S009545272106014

Direct and an indirect effect of liposomal miR-101 on cellular model of alzheimer’s disease

Sokolik V.V., Berchenko O.G., Kolyada O.K., Shulga S.M.

  1. SI «Institute of Neurology, Psychiatry and Narcology of National Academy of Medical Sciences of Ukraine», 46, Akademika Pavlova str., Kharkiv, Ukraine, 61000
  2. SI «D.F. Chebotaryov Institute of Gerontology of National Academy of Medical Sciences of Ukraine», 67, Vyshgorodskaya str., Kyiv, Ukraine, 04114
  3. SI «Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine», 2a, Osypovskoho str., Kyiv, Ukraine, 04123

SUMMARY. At present, brain diseases are an unsolved problem of the 21st century. Alzheimer’s disease was first discovered 100 years ago, and during this time not a single patient with this diagnosis has been cured. Therefore, the search for new treatment strategies using regulatory agents such as specific miRNAs is urgent. The aim was to determine the effect of liposomal miR-101 on amyloid-β protein 42 (Aβ42) levels and the cytokine system in a cellular model of Alzheimer’s disease. The work included PCR, ELISA and fluorescent methods. Using FAM, it was found that liposomal miR-101 accumulates in blood mononuclear cells pretreated with Aβ40 aggregates and functions for 2–3 hours, rather than being instantly destroyed by nucleases. Exogenous miR-101 did not affect AβPP gene transcription and decreased the formation of endogenous Aβ42. An indirect anti-inflammatory effect of liposomal miR-101 was established after 12 hours of incubation with mononuclear cells: a decrease in intracellular levels of TNFα and IL-10. However, miRNA-101 did not affect the expression of TNFα and IL-6 and delayed the peak of activation of IL-10 expression by 9 hours. Thus, liposomal miR-101 showed a direct anti-amyloidogenic effect and an indirect anti-inflammatory effect in a cellular model of Alzheimer’s disease.

Keywords: miR-101, Alzheimer's disease, liposomes, β-amyloid peptide, cytokines, blood mononuclear cells, fluorescein

TSitologiya i Genetika
2021, vol. 55, no. 6, 3-14

Current Issue
Cytology and Genetics
2021, vol. 55, no. 6, 499–509,
doi: 10.3103/S009545272106014

Full text and supplemented materials

References

1. Agostini, M., Tucci, P., Killick, R., et al., Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets, Proc. Natl. Acad. Sci. U. S. A., 2011. https://doi.org/10.1073/pnas.1112061109

2. Amakiri, N., Kubosumi, A., Tran, J., et al., Amyloid beta and microRNAs in Alzheimer’s disease, Front. Neurosci., 2019. https://doi.org/10.3389/fnins.2019.00430

3. Arancibia, S., Silhol, M., Mouliere, F., et al., Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats, Neurobiol. Dis., 2008. https://doi.org/10.1016/j.nbd.2008.05.012

4. Barak, B., Shvarts-Serebro, I., Modai, S., et al., Opposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNAs in mouse models, Transl. Psychiatry, 2013. https://doi.org/10.1038/tp.2013.77

5. Bertram, L., McQueen, M.B., Mullin, K., et al., Systematic meta-analyses of Alzheimer disease genetic association studies: the alzgene database, Nat. Genet., 2007. https://doi.org/10.1038/ng1934

6. Boissonneault, V., Plante, I., Rivest, S., et al., MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1, J. Biol. Chem., 2009. https://doi.org/10.1074/jbc.M807530200

7. Brouwers, N., Sleegers, K., Engelborghs, S., et al., Genetic risk and transcriptional variability of amyloid precursor protein in Alzheimer’s disease, Brain, 2006. https://doi.org/10.1093/brain/awl212

8. Chakrabarty, A., Tranguch, S., Daikoku, T., et al., MicroRNA regulation of cyclooxygenase-2 during embryo implantation, Proc. Natl. Acad. Sci. U. S. A., 2007. https://doi.org/10.1073/pnas.0705917104

9. Czauderna, F., Fechtner, M., Dames, S., et al., Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells, Nucleic Acids Res., 2003. https://doi.org/10.1093/nar/gkg393

10. Delay, C., Mandemakers, W., and Hebert, S.S., MicroRNAs in Alzheimer’s disease, Neurobiol. Dis., 2012. https://doi.org/10.1016/j.nbd.2012.01.003

11. Fenske, D.B., Chonn, A., and Cullis, P.R., Liposomal nanomedicines: an emerging field, Toxicol. Pathol., 2008. https://doi.org/10.1177/0192623307310960

12. Fillit, H., Ding, W.H., Buee, L., et al., Elevated circulating tumor necrosis factor levels in Alzheimer’s disease, Neurosci. Lett., 1991. https://doi.org/10.1016/0304-3940(91)90490-K

13. Frozza, R.L., Lourenco, M.V., and De Felice, F.G., Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects, Front. Neurosci., 2018. https://doi.org/10.3389/fnins.2018.00037

14. Fu, Y., Chen, J., and Huang, Z., Recent progress in microRNA-based delivery systems for the treatment of human disease, ExRNA, 2019.https://doi.org/10.1186/s41544-019-0024-y

15. Griffin, W.S., Nicoll, J.A., Grimaldi, L.M., et al., The pervasiveness of interleukin-1 in Alzheimer pathogenesis: a role for specific polymorphisms in disease risk, Exp. Gerontol., 2000. https://doi.org/10.1016/S0531-5565(00)00110-8

16. Hebert, S.S., Horre, K., Nicolai’, L., et al., Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression, Proc. Natl. Acad. Sci. U. S. A., 2008. https://doi.org/10.1073/pnas.0710263105

17. Hebert, S.S., Horre, K., Nicolai, L., et al., MicroRNA regulation of Alzheimer’s amyloid precursor protein expression, Neurobiol. Dis., 2009. https://doi.org/10.1016/j.nbd.2008.11.009

18. Kou, X., Chen, D., and Chen, N., The regulation of microRNAs in Alzheimer’s disease, Front. Neurol., 2020. https://doi.org/10.3389/fneur.2020.00288

19. Lee, K., Kim, H., An, K., et al., Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD mouse model of Alzheimer’s disease, Sci. Rep., 2016. https://doi.org/10.1038/srep34433

20. Lin, Q., Chen, J., Zhang, Zh., et al., Lipid-based nanoparticles in the systemic delivery of siRNA, Nanomedicine, 2008. https://doi.org/10.2217/nnm.13.192

21. Long, J.M. and Lahiri, D.K., MicroRNA-101 down-regulates Alzheimer’s amyloid-beta precursor protein levels in human cell cultures and is differentially expressed, Biochem. Biophys. Res. Commun., 2011. https://doi.org/10.1016/j.bbrc.2010.12.053

22. Losurdo, M. and Grilli, M., Extracellular vesicles, influential players of intercellular communication within adult neurogenic niches, Int. J. Mol. Sci., 2020. https://doi.org/10.3390/ijms21228819

23. Lukiw, W.J., Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus, Neuroreport, 2007. https://doi.org/10.1097/WNR.0b013e3280148e8b

24. Lukiw, W.J. and Alexandrov, P.N., Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease (AD) brain, Mol. Neurobiol., 2012. https://doi.org/10.1007/s12035-012-8234-4

25. Ma, T., Sun, X., Sun, S., et al., The study of peripheral blood miR-29a/101 in the diagnosis of Alzheimer’s disease, Chin. J. Behav. Med. Brain Sci., 2016. https://doi.org/10.3760/cma.j.issn.1674-6554.2016.11.011

26. Patel, N., Hoang, D., Miller, N., et al., MicroRNAs can regulate human APP levels, Mol. Neurodegeneration, 2008. https://doi.org/10.1186/1750-1326-3-10

27. Pillai, R.S., MicroRNA function: multiple mechanisms for a tiny RNA?, RNA, 2005. https://doi.org/10.1261/rna.2248605

28. Rajagopalan, L.E. and Malter, J.S., Growth factor-mediated stabilization of amyloid precursor protein mRNA is mediated by a conserved 29-nucleotide sequence in the 3'-untranslated region, J. Neurochem., 2000. https://doi.org/10.1046/j.1471-4159.2000.0740052.x

29. Rajagopalan, L.E., Westmark, C.J., Jarzembowski, J.A., et al., HnRNP C increases amyloid precursor protein (APP) production by stabilizing APP mRNA, Nucleic Acids Res., 1998. https://doi.org/10.1093/nar/26.14.3418

30. Ramser, E.M., Gan, K.J., Decker, H., et al., Amyloid-P oligomers induce tau-independent disruption of BDNF axonal transport via calcineurin activation in cultured hippocampal neurons, Mol. Biol. Cell, 2013. https://doi.org/10.1091/mbc.e12-12-0858

31. Reddy, P.H., Tonk, S., Kumar, S., et al., A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease, Biochem. Biophys. Res. Commun., 2017, https://doi.org/10.1016/j.bbrc.2016.08.067

32. Redis, R.S., Calin, S., Yang, Y., et al., Cell-to-cell miRNA transfer: from body homeostasis to therapy, Pharmacol. Ther., 2012. https://doi.org/10.1016/j.pharmthera.2012.08.003

33. Rodriguez-Ortiz, C.J., Baglietto-Vargas, D., Martinez-Coria, H., et al., Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice, J. Alzheimers Dis., 2014. https://doi.org/10.3233/JAD-140204

34. Rogers, J.T., Leiter, L.M., McPhee, J., et al., Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences, J. Biol. Chem., 1999. https://doi.org/10.1074/jbc.274.10.6421

35. Rumble, B., Retallack, R., Hilbich, C., et al., Amyloid a4 protein and its precursor in Down’s syndrome and Alzheimer’s disease, N. Engl. J. Med., 1989. https://doi.org/10.1056/NEJM198906013202203

36. Schipper, H.M., Maes, O.C., Chertkow, H.M., et al., MicroRNA expression in Alzheimer blood mononuclear cells, Gene Regul. Syst. Biol., 2007. https://doi.org/10.4137/GRSB.S361

37. Sleegers, K., Brouwers, N., Gijselinck, I., et al., APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy, Brain, 2006. https://doi.org/10.1093/brain/awl203

38. Sokolik, V.V., Berchenko, O.G., Levicheva, N.O., et al., Anti-amyloidogenic effect of MiR-101 in experimental Alzheimer’s disease, Biotechnol. Acta, 2008. https://doi.org/10.15407/biotech12.03.041

39. Sokolik, V.V., Berchenko, O.G., and Shulga, S.M., Comparative analysis of nasal therapy of curcumin soluble and liposomal forms of rats with model of Alzheimer’s disease, J. Alzheimer’s Dis. Parkinsonism, 2017.https://doi.org/10.4172/2161-0460.1000357

40. Song, J. and Lee, J.E., MiR-155 is involved in Alzheimer’s disease by regulating T lymphocyte function, Front. Aging Neurosci., 2015. https://doi.org/10.3389/fnagi.2015.00061

41. Strauss, S., Bauer, J., Ganter, U., et al., Detection of interleukin-6 and alpha 2-macroglobulin immuno-reactivity in cortex and hippocampus of Alzheimer’s disease patients, Lab. Invest., 1992, vol. 66, pp. 223–230.

42. Strillacci, A., Griffoni, C., Sansone, P., et al., MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells, Exp. Cell. Res., 2009. https://doi.org/10.1016/j.yexcr.2008.12.010

43. Vilardo, E., Barbato, C., Ciotti, M., et al., MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons, J. Biol. Chem., 2010. https://doi.org/10.1074/jbc.M110.112664

44. Yingchoncharoen, Ph., Kalinowski, D.S., and Richardson, D.R., Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come, Pharmacol. Rev., 2016. https://doi.org/10.1124/pr.115.012070

45. Zhang, J., Hu, M., Teng, Z., et al., Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer’s disease, J. Neurosci., 2014. https://doi.org/10.1523/JNEUROSCI.1165-14.2014