TSitologiya i Genetika 2019, vol. 53, no. 5, 25-34
Cytology and Genetics 2019, vol. 53, no. 5, 367–374, doi: https://www.doi.org/10.3103/S0095452719050050

Level of expression of genes PTGS2 and TGFB1 under the conditions of burn of the esophagus and with the introduction of melanin

Chornenka N.M., Raetska Ya.B., Dranitsina A.S., Kalmikova O.O., Dzerginskiy N.E., Savchuk O.M., Ostapchenko L.I.

SUMMARY. During the histological study, we had confirmed the degree of burn of the esophagus, and had evaluated the effect of melanin on healing processes, namely, faster recovery periods of damaged esophageal tissues. We have shown an increase in the expression of genes involved in the development of inflammation Ptgs2 and Tgfb1 in blood and esophageal tissues under alkali esophageal burn of 2 degree (AEB 2) conditions. After administration of melanin, the levels of expression of Ptgs2 and Tgfb1 genes in blood and esophageal tissues decreased compared to those in AEB 2 group. It was found that with AEB 2 in blood and esophageal tissues the content of pro-inflammatory (IL-1β, TNF-α) cytokines increased. After administration of melanin, there was a decrease in the content of pro-inflammatory cytokines compared with those of AEB 2 group. According to the obtained results the anti-inflammatory properties of this compound were demonstrated showing the prospect of melanin use as a substance contributing to chemical esophageal burn healing.

Keywords: alkaline burn of the esophagus, Ptgs2, Tgfb1 genes expression, cytokines, melanin

TSitologiya i Genetika
2019, vol. 53, no. 5, 25-34

Current Issue
Cytology and Genetics
2019, vol. 53, no. 5, 367–374,
doi: 10.3103/S0095452719050050

Full text and supplemented materials

References

1. Bonucci, J., Gragnani, A., Trincado, M.M., Vincentin, V., Correa, S.A., and Ferreira, L.M., The role of vitamin C in the gene expression of oxidative stress markers in fibroblasts from burn patients, Acta Cir. Bras., 2018, vol. 33, no. 8, pp. 703–712. https://doi.org/10.1590/s0102-865020180080000006

2. Xu, H.T., Guo, J.C., Liu, H.Z., and Jin, W.W., A time-series analysis of severe burned injury of skin gene expression profiles, Cell Physiol. Biochem., 2018, vol. 49, no. 4, pp. 1492–1498. https://doi.org/10.1159/000493451

3. Chornenka, N.M., Raetska, Ya.B., Savchuk, O.M., Torgalo, E.O., Beregova, T.V., and Ostapchenko, L.I., Correction parameters of endogenous intoxication in experimental burn disease at the stage of toxemia, Res. J. Pharm., Biol. Chem. Sci., 2016, vol. 5, pp. 7–12.

4. Kurowski, J.A. and Kay, M., Caustic ingestions and foreign bodies ingestions in pediatric patients, Pediatr. Clin. North. Am., 2017, vol. 64, no. 3, pp. 507–524. https://doi.org/10.1016/j.pcl.2017.01.004

5. Tiwari, V.K., Burn wound: how it differs from other wounds? Indian J. Plast. Surg., 2012, vol. 45, pp. 364–373. https://doi.org/10.4103/0970-0358.101319

6. Matthew, P.R. and Leopoldo, C.C., Burn wound healing and treatment: review and advancements, Crit. Care, 2015, vol. 22, pp. 12–20. https://doi.org/10.1186/s13054-015-0961-2

7. Hellmann, J., Tang, Y., Zhang, M.J., and Hai, T., Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation, Prostaglandins Other Lipid Mediat., 2015, vol. 3, pp. 116–117. https://doi.org/10.1016/j.prostaglandins.2015.01.001

8. Silva, N.T., Quintana, H.T., Bortolin, J.A., Ribeiro, D.A., and de Oliveira, F., Burn injury induces skeletal muscle degeneration, inflammatory host response, and oxidative stress in Wistar rats, J. Burn. Care Res., 2015, vol. 36, no. 3, pp. 428–433. https://doi.org/10.1097/BCR.0000000000000122

9. Li, N., Hu, D.H., Wang, Y.J., and Hu, X.L., Effects of adipose-derived stem cells on renal injury in burn mice with sepsis, Zhonghua Shao Shang Za Zhi, 2013, vol. 29, no. 3, pp. 249–254. https://doi.org/10.3760/cma.j.issn.1009-2587.2013.03.007

10. Wu, K.K., Cyclooxygenase 2 induction: molecular mechanism and pathophysiologic roles, J. Lab. Clin. Med., 1996, vol. 128, pp. 242–245. https://doi.org/10.1016/S0022-2143(96)90023-2

11. Tsai, S.C., Liang, Y.H., Chiang, J.H., Liu, F.C., and Lin, W.H., Anti-inflammatory effects of Calophyllum inophyllum L. in RAW264.7 cells, Oncol. Rep., 2012, vol. 28, no. 3, pp. 1096–1102. https://doi.org/10.3892/or.2012.1873

12. Liu, Y., Zuo, G.Q., Zhao, L., Chen, Y.X., Ruan, X.Z., and Zuo, D.Y., Effect of inflammatory stress on hepatic cholesterol accumulation and hepatic fibrosis in C57BL/6J mice, Zhonghua Shao Shang Za Zhi., 2013, vol. 21, no. 2, pp.116–120. https://doi.org/10.3760/cma.j.issn.1007-3418.2013.02.010

13. Cufí, S., Vazquez-Martin, A., Oliveras-Ferraros, C., Martin-Castillo, B., Joven, J., and Menendez, J.A., Metformin against TGF-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis, Cell Cycle, 2010, vol. 9, no. 22, pp. 4461–4468. https://doi.org/10.4161/cc.9.22.14048

14. Paunel-Görgülü, A., Kirichevska, T., and Lögters, T., Molecular mechanisms underlying delayed apoptosis in neutrophils from multiple trauma patients with and without sepsis, Mol. Med., 2012, vol. 18, no. 1, pp. 325–335. https://doi.org/10.2119/molmed.2011.00380

15. Zhou, J., Tu, J.J., and Huangetal, Y., Changes in serum contents of interleukin-6 and interleukin-10 and their relation with occurrence of sepsis and prognosis of severely burned patients, Zhonghua Shao Shang Za Zhi, 2012, vol. 28, no. 2, pp. 111–115. https://doi.org/10.3760/cma.j.issn.1009-2587.2012.02.008

16. Belardelli, F., Role of interferons and other cytokines in the regulation of the immune response, APMIS, 1995, vol. 103, no. 3, pp. 161–179. https://doi.org/10.1111/j.1699-0463.1995.tb01092.x

17. Newton, R., Kuitert, M., Bergmann, M., Adcock, I., and Barnes, P., Evidence for involvement of NF-kappaB in the transcriptional control of COX-2 gene expression by IL-1β, Biochem. Biophys. Res. Commum., 1997, vol. 237, pp. 28–32. https://doi.org/10.1006/bbrc.1997.7064

18. Salih, E., Afaf, K., Mohamed, AnwarK., and Basic, Clin., Pharmacol. Toxicol, 2017, vol. 120, no. 6, pp. 515–22.

19. Kunwar, A., Adhikary, B., Jayakumar, S., and Barik, A., Melanin, a promising radioprotector: mechanisms of actions in a mice model, Toxicol. Appl. Pharmacol., 2012, vol. 264, pp. 202–211. https://doi.org/10.1016/j.taap.2012.08.002

20. Brenner, M. and Hearling, V.G., The protective role of melanin against UV damage in human skin, Photochem. Photobiol., 2008, vol. 84, no. 3, pp. 539–549. https://doi.org/10.1111/j.1751-1097.2007.00226.x

21. Zeng-Yu, Y. and Jian-Hua, Q., Comparison of antioxidant activities of melanin fractions from chestnut shell, Molecules, 2016, vol. 21, p. 487. https://doi.org/10.3390/molecules21040487

22. Keypour, S., Riahi, H., Moradali, M., and Rafati, H., Investigation of the antibacterial activity of a chloroform extract of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) (Aphyllophoromycetideae), from Iran, Int. J. Med. Mushrooms, 2008, vol. 10, no. 4, pp. 345–349. https://doi.org/10.1615/IntJMedMushr.v10.i4.70

23. Racca, S., Spaccamiglio, A., Esculapio, P., Abbadessa, G., Cangemi, L., DiCarlo, F., and Portaleone, P., Effects of swim stress and alpha-MSH acute pre-treatment on brain 5-HT transporter and corticosterone receptor, Pharmacol. Biochem. Behav., 2005, vol. 81, no. 4, pp. 894–900. https://doi.org/10.1016/j.pbb.2005.06.014

24. Chornenka, N.M., Raetska YA.B., Savchuk O.M., Kompanets I.V., Beregova, T.V., and Ostapchenko, L.I., Effect of different doses of melanin in the blood protein changes in rats under alkaline esophageal burns, Res. J. Pharmaceut., Biol. Chem. Sci., 2017, vol. 8, no. 1, p. 261.

25. Seniuk, O., Gorovoj, L., and Kovalev, V., Anticancerogenic propertis of melaninglucan complex from higher fungi, in Proc. 5th Int. Med. Mushroom Con. Nantong, 2009, pp. 142–149. https://doi.org/10.1615/IntJMedMushr. v13.i1.20

26. Carletti, G., Nervo, G., and Cattivelli, L., Flavonoids and melanins: a common strategy across two kingdoms, Int. J. Biol. Sci., 2014, vol. 10, no. 10, pp. 1159–1170. https://doi.org/10.7150/ijbs.9672

27. Raetska, Ya.B., Ishchuk, T.V., Savchuk, O.M., and Ostapchenko, L.I., Experimental modeling of first-degree chemically-induced esophageal burns in rats, Med. Chem., 2013, vol. 15, no. 4, pp. 30–34.

28. Chyzhanska, N.V., Tsyryuk, O.I., and Beregova, T.V., The level of cortisol in the blood of rats before and after stress action against the background of melanin, Visn. Probl. Biol. Med., 2007, vol. 1, pp. 40–44.

29. Fistal, E.Y., Kozinets, G.P., and Samoilenko, G.E., Combustiology, Kharkov, 2004.

30. Crowther, J.R., The ELISA Guidebook, Crowther: Humana Press Inc., 2001. https://doi.org/10.1007/978-1-60327-254-4

31. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction, Anal. Biochem., 1987, vol. 162, no. 1, pp. 156–159.

32. Livak, E.J. and Schmittgen, T.D., Analysis of relative gene expression data using real time quantitative PCR and the 2–ΔCT method, Methods, 2001, vol. 25, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

33. Mehmet, A.O. and Tung, T.N., Comparison of the cytokine and chemokine dynamics of the early inflammatory response in models of burn injury and infection, Cytokine, 2011, vol. 55, no. 3, pp. 362–371. https://doi.org/10.1016/j.cyto.2011.05.010

34. Wigenstama, E., Elfsmarka, L., Buchtab, A., and Jonasson, S., Inhaled sulfur dioxide causes pulmonary and systemic inflammation leading to fibrotic respiratory disease in a rat model of chemical-induced lung injury, Toxicology, 2016, vols. 368–369, pp. 28–36. https://doi.org/10.1016/j.tox.2016.08.018

35. Cade, F.I., Paschalis, E.I., Regatieri, C.V., Vavvas, D.G., and Dana, R., Alkali burn to the eye: protection using TNF-α inhibition, Cornea, 2014, vol. 33, no. 4, pp. 382–389. https://doi.org/10.1097/ICO.0000000000000071

36. Liu, Y., Cai, S., Shu, X.Z., Shelby, J., and Prestwich, G.D., Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing., Wound Repair Regen., 2007, vol. 5, no. 2, pp. 245–251. https://doi.org/10.1111/j.1524-475X.2007.00211.x

37. Rousseau, A.F., Damas, P., and Ledoux, D., Effect of cholecalciferol recommended daily allowances on vitamin D status and fibroblast growth factor-23: an observational study in acute burn patients, Burns, 2014, vol. 40, no. 5, pp. 865–870. https://doi.org/10.1016/j.burns.2013.11.015