TSitologiya i Genetika 2021, vol. 55, no. 1, 33-41
Cytology and Genetics 2021, vol. 55, no. 1, 28–35, doi: https://www.doi.org/10.3103/S0095452721010138

Genetic identification and antimicrobial activity of Streptomyces sp. strain Je 1–6, isolated from rhizosphere soil of Juniperus excelsa Bieb.

Tistechok S.I., Tymchuk I.V., Korniychuk O.P., Fedorenko V.O., Luzhetskyy A.M., Gromyko O.M.

  1. Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
  2. Department of Microbiology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  3. Department of Pharmaceutical Biotechnology, Saarland University, Saarbrucken, Germany
  4. Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrucken, Germany

SUMMARY. Actinobacteria isolated from poorly explored biotopes are of interest as producers of biologically active compounds. Here, we report about the producer of lydicamycin Je 1–6, isolated from the rhizosphere soil of J. excelsa Bieb. collected from the Crimean Peninsula, Ukraine, that demonstrated its antagonistic activity against gram-positive bacteria. Based on the 16S rRNA gene sequence analysis, the strain Je 1–6 was affiliated to the Streptomyces genus. The crude extract from the biomass of this strain showed its activity against gram-positive bacteria, including polyresistant clinical isolates of Staphylococcus sp. The dereplication analysis of the extract of strain Je 1–6 resulted in determining lydicamycin and its congeners: 30-demethyllydicamycin, 30-demethyl-8-deoxylydicamycin and 8-deoxylydicamycin. MLSA analysis based on the 16S rRNA gene and five housekeeping genes atpD, gyrB, rpoB, recA, and trpB of the strain Je 1–6 showed a high level of homology with Streptomyces sp. ID38640.

Keywords: Streptomyces, MLSA, phylogenetic analysis, lydicamycin, housekeeping genes

TSitologiya i Genetika
2021, vol. 55, no. 1, 33-41

Current Issue
Cytology and Genetics
2021, vol. 55, no. 1, 28–35,
doi: 10.3103/S0095452721010138

Full text and supplemented materials

References

1. Ahmad, M.S., El-Gendy, A.O., Ahmed, R.R., et al., Exploring the antimicrobial and antitumor potentials of Streptomyces sp. AGM12-1 isolated from Egyptian soil, Front. Microbiol., 2017, vol. 8, p. 438. https://doi.org/10.3389/fmicb.2017.00438

2. Aminov, R., History of antimicrobial drug discovery: major classes and health impact, Biochem. Pharmacol., 2017, vol. 133, pp. 4–19. https://doi.org/10.1016/j.bcp.2016.10.001

3. Bauer, A.W., Kirby, W.M., Sherris, J.C., et al., Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol., 1996, vol. 45, pp. 493–496.

4. Bilyk, O., Sekurova, O.N., Zotchev, S.B., et al., Cloning and heterologous expression of the grecocycline bio-synthetic gene cluster, PLoS One, 2016, vol. 11, no. 7. e0158682. https://doi.org/10.1371/journal.pone.0158682

5. Buckingham, J., Dictionary of Natural Products, London: CRC Press/Taylor and Francis Group, 1993.

6. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, pp. 1792–1797. https://doi.org/10.1093/nar/gkh340

7. Felsenstein, J., Evolutionary trees from DNA sequences: a maximum likelihood approach, J. Mol. Evol., 1981, vol. 17, pp. 368–376.

8. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, pp. 783–791.

9. Furumai, T., Eto, K., Sasaki, T., et al., TPU-0037-A, B, C and D, novel lydicamycin congeners with anti-MRSA activity from Streptomyces platensis TP-A0598, J. Antibiot., 2002, vol. 55, no. 10, pp. 873–880. https://doi.org/10.7164/an-tibiotics.55.873

10. Genilloud, O., Actinomycetes: still a source of novel antibiotics, Nat. Prod. Rep., 2017, vol. 34, pp. 1203–1232. https://doi.org/10.1039/c7np00026j

11. Goodfellow, M. and Williams, S., Ecology of actinomycetes, Ann. Rev. Microbiol., 1983, vol. 37, pp. 189–216.

12. Guo, Y., Zheng, W., Rong, X., et al., A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 149–159. https://doi.org/10.1099/ijs.0.65224-0

13. Hayakawa, Y., Kanamaru, N., Shimazu, A., et al., Lydicamycin, a new antibiotic of a novel skeletal type. I. Taxonomy, fermentation, isolation and biological activity, J. Antibiot., 1991, vol. 44, no. 3, pp. 282–287.

14. Khamna, S., Yokota, A., and Lumyong, S., Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production, World J. Microbiol. Biotechnol., 2009, vol. 25, pp. 649–655. https://doi.org/10.1007/s11274-008-9933-x

15. Kieser, B., Buttner, M., Charter, K., and Hopwood, B., Practical Streptomyces Genetics, Norwich: John Innes Foundation, 2000.

16. Kimura, M., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 1980, vol. 16, pp. 111–120.

17. Komaki, H., Hosoyama, A., Igarashi, Y., et al., Streptomyces lydicamycinicus sp. nov. and its secondary metabolite biosynthetic gene clusters for polyketide and nonribosomal peptide compounds, Microorganisms, 2020, vol. 8, no. 3, p. 370. https://doi.org/10.3390/microorganisms8030370

18. Kostyanev, T. and Can, F., The global crisis of antimicrobial resistance, in Antimicrobial Stewardship, 1st ed., Pulcini, C., Ergonul, O., Can, F., and Beovic, B., Eds., Cambridge: Academic Press, 2017, pp. 3–12.

19. Kumar, S., Stecher, G., Li, M., et al., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

20. Labeda, D.P., Doroghazi, J.R., Ju, K.S., et al., Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov., Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 894–900. https://doi.org/10.1099/ijs.0.058107-0

21. Liu, D., Yan, R., Fu, Y., et al., Antifungal, plant growth-promoting, and genomic properties of an endophytic actinobacterium Streptomyces sp. NEAU-S7GS2, Front. Microbiol., 2019, vol. 10, p. 2077. https://doi.org/10.3389/fmicb.2019.02077

22. Maciejewska, M., Pessi, I.S., Arguelles-Arias, A., et al., Streptomyces lunaelactis sp. nov., a novel ferroverdin A-producing Streptomyces species isolated from a moonmilk speleothem, Antonie van Leeuwenhoek, 2015, vol. 107, pp. 519–531. https://doi.org/10.1007/s10482-014-0348-4

23. Raju, R., Gromyko, O., Fedorenko, V., et al., Juniperolide A: a new polyketide isolated from a terrestrial actinomycete, Streptomyces sp., Org. Lett., 2012a, vol. 14, no. 23, pp. 5860–5863. https://doi.org/10.1021/ol302766z

24. Raju, R., Gromyko, O., Fedorenko, V., et al., Leopolic acid A, isolated from a terrestrial actinomycete, Streptomyces sp., Tetrahedron Lett., 2012b, vol. 53, pp. 6300–6301. https://doi.org/10.1016/j.tetlet.2012.09.046

25. Rebets, Y., Ostash, B., Luzhetskyy, A., et al., Production of landomycins in Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators, FEMS Microbiol. Lett., 2003, vol. 222, pp. 149–153. https://doi.org/10.1016/S0378-1097(03)00258-1

26. Rong, X. and Huang, Y., Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA–DNA hybridization, validating the MLSA scheme for systematics of the whole genus, Syst. Appl. Microbiol., 2012, vol. 35, no. 1, pp. 7–18. https://doi.org/10.1016/j.syapm.2011.10.004

27. Running, W., Computer software reviews, Chapman and Hall Dictionary of Natural Products on CD-ROM, J. Chem. Inf. Model., 1993, vol. 33, pp. 934–935.

28. Saitou, N. and Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.

29. Sosio, M., Gaspari, E., Iorio, M., et al., Analysis of the Pseudouridimycin biosynthetic pathway provides insights into the formation of C-nucleoside antibiotics, Cell Chem. Biol., 2018, vol. 25, pp. 540–549. https://doi.org/10.1016/j.chembiol.2018.02.008

30. Ventola, C.L., The antibiotic resistance crisis, part 1: causes and threats, P&T, 2015, vol. 40, no. 4, pp. 277–283.

31. Viaene, T., Langendries, S., Beirinckx, S., et al., Streptomyces as a plant’s best friend?, FEMS Microbiol. Ecol., 2016, vol. 92, no. 8. fiw119. https://doi.org/10.1093/femsec/fiw119

32. Wang, Q., Garrity, G.M., Tiedje, J.M., et al., Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol., 2016, vol. 73, pp. 5261–5267. https://doi.org/10.1128/AEM.00062-07