TSitologiya i Genetika 2021, vol. 55, no. 2, 79-80
Cytology and Genetics 2021, vol. 55, no. 2, 194–198, doi: https://www.doi.org/10.3103/S0095452721020146

Somatic cell alterations in interspecific hybrids of Cenchrus purpureum (Schumach.) and Cenchrus americanus (L.) Morrone by genomic in situ hybridization

Reis G.B., Mesquita A.T., Andrade­vieira L.F., Azevedo A.L.S., Davide L.C.

  1. Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brasil
  2. Departamento de Biologia Vegetal,  Universidade Estadual de Campinas, Campinas, SP, Brasil
  3. Laboratório de Genética Vegetal, Embrapa Gado de Leite, Juiz de Fora, Juiz de Fora, MG, Brasil

The cross between Cenchrus purpureum (Schumach.) (Napier grass) and Cenchrus americanus (L.) Morrone (pearl millet) produce triploid and sterile hybrids. Chromosome doubling used to restore the fertility of the triploid hybrids produces hexaploid material that are mixoploid, but with desirable forage characteristics. Even backcrosses result in tetraploid and pentaploid mixoploid materials. The aim of this study was to compare the frequency of chromosome abnormalities in somatic cells of hybrids originated by backcross to compare with those found in synthetic he­xaploid hybrids finding if there is a most stable material. To identify the abnormalities it was used the genomic in situ hybridization. The cell cycle analysis revealed similar frequencies and types of alterations both in the hexaploid and in hybrids originating from backcrosses. Chromosome elimination was reported in all types of hybrids. It was found micronuclei, not­oriented chromosomes at metaphase, lost chromosome at anaphase/telophase and bridges at anaphase involving chromosomes from Napier grass and pearl millet in all hybrids analyzed independently of ploidy level.

Keywords: Pearl millet, Napier grass, chromosome alterations; chromosome elimination; micronucleus

TSitologiya i Genetika
2021, vol. 55, no. 2, 79-80

Current Issue
Cytology and Genetics
2021, vol. 55, no. 2, 194–198,
doi: 10.3103/S0095452721020146

Full text and supplemented materials

References

1. Abreu, J.C., Davide, L.C., Pereira, A.V., and Barbosa, S., Mixoploidia em híbridos de capim‑elefante x milheto tratados com agentes antimitóticos, Pesqui. Agropecu. Bras., 2006, vol. 41, pp. 1629–1635.

2. Andrade-Vieira, L.F., Reis, G.B., Torres, G.A., Oliveira, A.R., Brasileiro-Vidal, A.C., Pereira, A.V., and Davide, L.C., Biparental chromosome elimination in artificial interspecific hybrids Pennisetum purpureum and Pennisetum glaucum, Crop Sci., 2013, vol. 53, pp. 1–8. https://doi.org/10.2135/cropsci2013.03.0155

3. Baptista-Giacomelli, F.R., Pagliarini, M.S., and Almeida, J.L.D., Elimination of micronuclei from microspores in a Brazilian oat (Avena sativa L.) variety, Genet. Mol. Biol., 2000, vol. 23, pp. 681–684.

4. Campos, J.M.S., Davide, L.C., Salgado, C.C., Santos, F.C., Costa, P.N., Silva, P.S., Alves, C.C.S., Viccini, L.F., and Pereira, A.V., In vitro induction of hexaploid plants from triploid hybrids of Pennisetum purpureum and Pennisetum glaucum, Plant Breed., 2009, vol. 128, pp. 101–104. https://doi.org/10.1111/j.1439-0523.2008.01546.x

5. Gupta, S.B., Duration of mitotic cycle and regulation of DNA replication in Nicotiana plumbaginifolia and hybrid derivative of N. tabacum showing chromosome instability, Can. J. Genet. Cytol., 1969, vol. 11, no. 1, pp. 133–142.

6. Ishii, T., Toshie, U., Hiroyuki, T., and Hisashi, T., Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells, Chromosome Res., 2010, vol.18, pp. 821–831. https://doi.org/10.1007/s10577-010-9158-3

7. Jauhar, P.P., Cytogenetics and Breending of Pearl Millet and Related Species, New York: A. R. Liss, 1981.

8. Jauhar, P.P. and Hanna, W.W., Cytogenetics and genetics of pearl millet, Adv. Agronomy, 1998.

9. Jiang, J., Gill, B.S., Wang, G.L., Ronald, P.C., and Ward, D.C., Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, pp. 4487–4491. https://doi.org/10.1073/pnas.92.10.4487

10. Koba, T., Handa, T., and Shimada, T., Efficient production of wheat–barley hybrids and preferential elimination of barley chromosomes, Theor. Appl. Gen., 1991, vol. 81, pp. 285–292. https://doi.org/10.1007/BF00228665

11. Leão, F.F., Cancellier, L.L., Pereira, A.V., Da Silva Ledo, F.J., and Afférri, F.S., Produção forrageira e composição bromatológica de combinações genômicas de capim-elefante e milheto, Revista Ciência Agronômica, 2012, vol. 43, pp. 368–375.

12. Leão, F.F., Davide, L.C., Campos, J.M.S., Pereira, A.V., and Bustamante, F.O., Genomic behavior of hybrid combinations between elephant grass and pearl millet, Pesqui. Agropecu. Bras., 2011, vol. 46, pp. 712–719.

13. Ma, X.F. and Gustafson, J.P., Genome evolution of allopolyploids: a process of cytological and genetic diploidization, Cytogenet. Genome Res., 2006, vol. 109, pp. 236–249. https://doi.org/10.1159/000082406

14. Martel, E., DeNay, D., Siljak Yakovlev, S., Brown, S., and Sarr, A., Genome size variation and basic chromosome number in pearl millet and fourteen related Pennisetum species, J. Hered., 1997, vol. 88, pp. 139–143. https://doi.org/10.1093/oxfordjournals.jhered.a023072

15. Ozkan, H., Tuna, M., and Arumuganathan, K., Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops–Triticum) group, J. Hered., 2003, vol. 94, pp. 260–264. https://doi.org/10.1093/jhred/esg053

16. Paiva, E.A., Bustamante, F.O., Barbosa, S., Pereira, A.V., and Davide, L.C., Meiotic behavior in early and recent duplicated hexaploid hybrids of Napier grass (Pennisetum purpureum) and pearl millet (Pennisetum glaucum), Caryologia, 2012, vol. 65, pp. 114–120. https://doi.org/10.1080/00087114.2012.709805

17. Pereira, A.V., Valle, C.B., Ferreira, R.P., and Miles, J.W. Melhoramento de forrageiras tropicais, in Recursos Genéticos e Melhoramento de Plantas, Nass, L.L., Valois, A.C.C., Melo, I.S., and Valadares-Ingres, M.C., Eds., Rondonópolis: Fundação M.T., 2001, pp. 449–601.

18. Pereira, A.V., Souza-Sobrinho, F., Souza, F.H.D., and Ledo, F.J.S., Tendências do melhoramento genético e produção de sementes forrageiras no Brasil, in Simpósio de Atualização eem Genética e Melhoramento de Plantas, 2003, 7, Lavras, Anais, Lavras: UFLA, 2003, pp. 36–63.

19. Powell, F.D., Hanna, W., Anna, W., and Burton, G., Origin, cytology, and reproductive characteristic of haploids in pearl millet, Crop Sci., 1975, vol. 15, pp. 389–392.

20. Reis, G.B., Mesquita, A.T., Torres, G.A., Andrade-Vieira, L.F., Pereira, A.V., and Davide, L.C., Genomic homeology between Pennisetum purpureum and Pennisetum glaucum (Poaceae), Comp. Cytogenet., 2014, vol. 8, pp. 199–209. https://doi.org/10.3897/CompCytogen.v8i3.7732

21. Reis, G.B., Ishii, T., Fuchs, J., Houben, A., and Davide, L.C., Tissue-specific genome instability in synthetic interspecific hybrids of Pennisetum purpureum (Napier grass) and Pennisetum glaucum (pearl millet) is caused by micronucleation, Chromosome Res., 2016, vol. 12, pp. 1–3. https://doi.org/10.1007/s10577-016-9521-0

22. Sanei, M., Pickering, R., Fuchs, J., Banaei Moghaddam, A.M., Dziurlikowska, A., and Houben, A., Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids, Plant Biol., 2011, vol. 108, pp. 498–505. https://doi.org/10.1073/pnas.1103190108

23. Santos, F.M.C., Torres, G.A., Techio, V., Pereira, A.V., and Davide, L.C., Intra- and intergenomic chromosomal pairing in artificially polyploidized elephant grass and pearl millet hybrids, Pesqui. Agropecu. Bras., 2017, vol. 52, no. 9, pp. 814–817. https://doi.org/10.1590/s0100-204x2017000900014

24. Souza-Sobrinho, F.D., Pereira, A.V., Ledo, F.J.D., Botrel, M.A., Oliveira, J.S.E., and Xavier, D.F., Agronomic evaluation of interespecific hybrids of elephant grass and pearl millet, Pesqui. Agropecu. Bras., 2005, vol. 40, pp. 873–880.

25. Sundberg, E. and Glimelius, K., Effects of parental ploidy and genetic divergence on chromosome elimination and chloroplast segregation in somatic hydrids within Brassicaceae, Theor. Appl. Genet., 1991, vol. 83, pp. 81–88.

26. Techio, V.H., Davide, L.C., and Pereira, A.V.P., Genomic analysis in Pennisetum purpureum and P. glaucum hybrids, Caryologia, 2005, vol. 8, pp. 28–33.

27. Tiwari, V.K., Rawat, N., Neelam, K., Kumar, S., Randhawa, G.S., and Dhaliwal, H.S., Random chromosome elimination in synthetic Triticum–Aegilops amphiploids leads to development of a stable partial amphiploid with high grain micro-and macronutrient content and powdery mildew resistance, Genome, 2010, vol. 53, pp. 1053–1065. https://doi.org/10.1139/G10-083