TSitologiya i Genetika 2021, vol. 55, no. 1, 96-97
Cytology and Genetics 2021, vol. 55, no. 1, 87–95, doi: https://www.doi.org/10.3103/S0095452721010114

A study of constitutive heterochromatin and NOR banding in three species of Puntius from the State of Haryana, India

Neeru Kamboj, Bhatnagar A., Yadav A.S.

  • Department of Zoology, Kurukshetra University, Kurukshetra, Haryana-136119. India

The purpose of the present study was to investigate and compare the karyotypes of  three species of Puntius viz. Puntius sarana (Hamilton, 1822), Puntius sophore (Hamilton, 1822) and Puntius ticto (Hamilton, 1822) belonging to family Cyprinidae in terms of chromosomal architecture, banding pattern and number of chromosomes  from  aquatic ecosystems of  Haryana, India. Diploid chromosome number 50 was observed in all 3 species of Puntius. The chromosomes of 3 species of Puntius showed constitutive heterochromatin at telomeric and centromeric regions of chromosomes.The Ag-NOR (Argyrophilic-Nucleolus Organizer Region) bands were observed on homologous chromosome pair numbers 2, 8 and 14 in P. sophore, pair numbers 2, 9 and 14 in P. ticto.The diploid chromosome number in P. sarana was found to be 2n = 50, 2 pairs of metacentric chromosomes, 3 pairs of subtelocentric and 20 pairs of acrocentric chromosomes. Chromosomal studies on the P. sophore revealed the diploid chromosome number to be 2n = 50, showed 16 pairs of metacentric chromosomes, 5 pairs of submetacentric, 2 pairs of subtelocentric and 2 pairs of acrocentric chromosomes. The diploid chromosome number in P. ticto was found to be 2n = 50, with 15 pairs of metacentric chromosomes, 6 pairs of submetacentric, 2 pairs of subtelocentric and 2 pairs of acrocentric chromosomes. No heteromorphic sex chromosomes were cytologically detected. Variations in chromosomes are observed with respect to earlier studies which may be due to variation in habitat conditions as a result of anthropogenic activities.

Keywords: Chromosome,Puntius sarana, Puntius sophore, Puntius ticto, Karyotype

TSitologiya i Genetika
2021, vol. 55, no. 1, 96-97

Current Issue
Cytology and Genetics
2021, vol. 55, no. 1, 87–95,
doi: 10.3103/S0095452721010114

Full text and supplemented materials


1. Baker, R.J., Bowers, J.H., and Smith, M.H., Reply to comments on “Chromosomal evolution in Peromyscus,” Evolution, 1975, vol. 28, p. 189.

2. Bano, R., Tripathi, N.K., Kumar, P., and Kumari, A., Meiotic chromosomes and Karyotypes of Puntius ticto (Cyprinidae) from Kathua region (J and K) India, Int. J. Recent Sci. Res., 2015, vol. 6, pp. 2863–2866.

3. Bhatnagar, A., Yadav, A.S., and Kamboj, N., Karyomorphology of three Indian major carps from Haryana, India, J. Fish. Sci., 2014. https://doi.org/10.3153/jfscom.201413

4. Bhatnagar, A., Yadav, A.S., and Kamboj, N., Karyological studies from mitotic metaphases in three carp species, Nucleus, 2018. https://doi.org/10.1007/s13237-018-0246-7

5. Das, J.K. and Khuda-Bukhsh, A.K., G-bands karyotypes in two species of fishes, Puntius conchonius (Cyprinidae) and Pangusius hypophthalmus (Pangasidae), Environ. Ecol., 2003, vol. 21, pp. 59–63.

6. Fredga, K., Chromosomal changes in vertebrates evolution, Proc. R. Soc. Lond. B, 1977, vol. 199, pp. 377–397.

7. Ganai, F.A. and Yousuf, A.R., A karyological analysis of Puntius conchonius (Hamilton, 1822) (Pisces: Cyprinidae), a new cytotype from Dal lake Srinagar, Kashmir, Jammu and Kashmir (J&K), India, Int. J. Fish Aquaculture, 2011, vol. 3, pp. 175–179.

8. Howell, W.M. and Black, D.A., Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method, Experientia, 1980, vol. 36, pp. 1014–1015.

9. Imai, H.T., Maruyama, T., Gojobori, Y.I., Inoue, Y., and Crozer, R.H., Theoretical basis for karyotype evolution. I. The minimum interaction hypothesis, Am. Nat., 1986, vol. 128, pp. 900–920.

10. Imai, H.T., Satya, Y., and Takahata, N., Integrative study on chromosome evolution of mammals, ants and wasps on minimum interaction theory, J. Theor. Biol., 2001, vol. 210, pp. 475–497.

11. Jayaram, K.C., The Freshwater Fishes of the Indian Region, Delhi: Narendra Publishing House, 1999.

12. Kalbassi, M.R., Hossei, S.V., and Tahergorabi, R., Karyotype analysis in Schizothorax zarudnyi from Hamoon Lake, Iran, Turk. J. Fish Aqua. Sci., 2008, vol. 8, pp. 335–340.

13. Khan, I. and Ali, M., Current status of the fish fauna of River Jhelum, Kashmir, J&K, 2013. https://doi.org/10.4172/scientificreports694

14. Khuda-Bukhsh, A.R. and Chakrabarti, C., Differential C-heterochromatin distribution in two species of freshwater fish, Anabas testudineus (Bloch.) and Puntius sarana (Hamilton), Indian J. Exp. Biol., 1999, vol. 38, pp. 265–268.

15. Khuda-Bukhsh, A.R. and Datta, S., Ag-NOR locations in metaphase chromoomes of two species of Puntius Cyprinidae: Pisces, Proc Zool. Soc. (Calcutta), 1997, vol. 509, pp. 153–157.

16. Khuda-Bukhsh, A.R. and Tiwari, S., Localization of nucleolus organizer regions (NORs) in the metaphase chromosomes of 9 species of teleosts (Pisces) from India, in Systematics and Evolution of Indo-Pacific Fishes. Proc. Fourth Indo-Pac. Fish Conf., 1994, vol. 502, pp. 27–39.

17. Kolnicki, R.L., Kinetochore reproduction in animal evolution: cell biological explanation of karyotype fission theory, Proc. Natl. Acad. Sci. U. S. A., 2000. https://doi.org/10.1073/pnas.97.17.9493

18. Levan, A., Fredga, K., and Sandberg, A.A., Nomenclature for centromeric position on chromosome, Hereditas, 1964. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x

19. Manna, G.K. and Prasad, R., A new perspective in the mechanism of evolution of chromosomes in fishes, J. Cytol. Genet. Congr. Suppl., 1971, pp. 237–240.

20. Manna, G.K. and Prasad, R., Somatic and germinal chromosome of two species of fishes belonging to the genus Puntius, J. Cytol. Genet., 1973, vol. 8, p. 145.

21. Matthey, R., The chromosomal formulae of eutherian mammals, in Cytotaxonomy and Vertebrate Evolution, Chiarelli, A. B. and Capanna, E., Eds., Mutat. Res., New York: Academic Press, 1973, vol. 343, pp. 121–135.

22. Menon, A.G.K., Check list—fresh water fishes of India, Rec. Zool. Surv. India Occ., 1999, vol. 175, pp. 1–366.

23. Navashin, M., The dislocation hypothesis of evolution of chromosome numbers, Zoological Indukut Abstamm Under Vereblehre, 1932, vol. 63, pp. 224–231.

24. Nayyar, R.P., Karyotype studies in seven species of Cyprinidae, Genetica, 1964, vol. 35, pp. 95–104.

25. Neeru, Bhatnagar, A., and Yadav, A.S., A Study of constitutive heterochromatin and NOR banding in three species of Indian major carps from the State of Haryana, India, J. Appl. Nat. Sci., 2018. https://doi.org/10.31018/jans.v10i2.1731

26. Pal, R., Cytogenetic analysis in some fishes belonging to family Cyprinidae, Ph.D. Thesis, Kurukshetra University, Kurukshetra, 1994.

27. Rishi, K.K. and Rishi, S., Giemsa banding in fish chromosome, 3rd All India Congress of Cytology and Genetics, in Perspective in Cytology and Genetics, Manna, G.K. and Sinha, U., Eds., Delhi: Hindasia Publishers, 1981, vol. 3, pp. 103–106.

28. Rishi, K.K., Shashikala, and Rishi, S., Karyotype study on six Indian hill-stream fishes, Chromosome Sci., 1998, vol. 2, pp. 9–13.

29. Sahoo, P.K., Nanda, P., and Bharat, A., Karyotype analysis of Neolissocheilus hexagonolepis (McClelland), Punctius ticto (Ham.) and P. chola (Ham.) (Family: Cyprinidae, Pisces), Cytologia, 2007. https://doi.org/10.1508/CYTOLOGIA.72.409

30. Saroniya, R.K., Nagpure, N.S., Saksena, D.N., Kushwaha, B., and Kumar, R., Cytotaxonomic studies in four species of genus Puntius (Hamilton, 1822) from central India, Nat. Acad. Sci. Lett., 2013. doihttps://doi.org/10.1007/s40009-013-0148-9

31. Sharma, O.P., Tripathi, N.K., Agarwal, A., and Tripathi, S., Karyotypic diversity in genus Puntius (Cyprinidae: Pisces), Nucleus, 1990, vol. 33, nos. 1–2, pp. 81–83.

32. Sturtevant, A.H. and Novitski, E., The homologies of the chromosome elements in the genus Drosophila, Genetics, 1941, vol. 26, pp. 517–541.

33. Sumner, A.T., A simple technique for demonstrate centromeric heterochromatin, Exp. Cell Res., 1972, vol. 75, pp. 304–306.

34. Takahata, N., Maruyama, T., Danial, A., Honda, T., Matsuda, Y., and Moriwaki, K., Theoretical basis for karyotype evolution. II. The fusion burst in man and mouse, Jpn. J. Genet., 1988. https://doi.org/10.1266/jjg.63.313

35. Taki, Y. and Suzuki, A.A., Comparative chromosome study of Puntius (Cyprinidae: Pisces). II. Indian and Ceylonese species, Proc. Jpn. Acad. Sci., 1977, vol. 53, pp. 282–286.

36. Talukdar, B., Mili, S., Kalita, H.K., and Sarma, D., Karyology of Puntius sophore (Pisces. Cypriniformes) from the Brahamputra River, Assam, India, Poult. Fish. Wildl. Sci., 2016. https://doi.org/10.4172/2375-446X.1000167

37. Tan, X., Jian, G.Q., and Li, X., Karyological analyses on redclaw crayfish Cherax quadricarinatus (Decapoda: Parastacidae). Aquaculture, 2004.https://doi.org/10.1016/j.aquaculture.2003.12.020

38. Tjio, J.H. and Whang, J., in Human Chromosome Methodology, New York: Academic, 1965.

39. Todd, N.B., Karyotypic fissioning and Canid phylogeny, J. Theor. Biol., 1970, vol. 26, pp. 445–480.