Цитологія і генетика 2020, том 54, № 6, 14-22
Cytology and Genetics 2020, том 54, № 6, 514–521, doi: https://www.doi.org/10.3103/S0095452720060067

Індукція стійкості пшениці проти збудника базального бактеріозу рістстимулювальними бактеріями

Коломієць Ю.В., Григорюк І.П., Ліханов А.Ф., Буценко Л.М., Пасічник Л.А., Блюм Я.Б.

  • Національний університет біоресурсів і природокористування України, 03041, Україна, Київ, вул. Героїв Оборони, 15
  • Інститут мікробіології і вірусології ім. Д.К. Заболотного НАН України, 03134, Україна, Київ, вул. Академіка Заболотного, 154
  • Державна установа «Інститут харчової біотехнології та геноміки НАН України» 04123, Україна, Київ, вул. Осиповського, 2а

Застосування суспензії клітин рістстимулювальних бактерій (Bacillus subtilis) спричиняє підвищення ступеня стійкості рослин пшениці ярої сорту Гренні проти збудника базального бактеріозу (Pseudomonas syringae pv. atrofaciens) на 25 %. Визначено ініціацію синтезу біополімерів клітинної стінки, зокрема целюлози, лігніну і суберіну й акумуляцію вмісту оксикоричних і оксибензойних кислот в листках рослин.

РЕЗЮМЕ. Применение суспензии клеток ростстимулирующих бактерий (Bacillus subtilis) вызывает повышение сте-пени устойчивости растений пшеницы яровой сорта Гренни против возбудителя базального бактериоза (Pseudomonas syringae pv. аtrofaciens) на 25 %. Установлено инициацию синтеза биополимеров клеточной стенки, в частности целлюлозы, лигнина и суберина й аккумуляцию содержания оксикоричных и оксибензойных кислот в листьях растений.

Ключові слова: Triticum avesticum L., стійкість, Pseudomonas syringae pv. atrofaciens, рістстимулювальні бактерії, автофлуоресценція, анатомічні показники
Triticum avesticum L., устойчивость, Pseudomonas syringae pv. atrofaciens, ростстимулирующие бактерии, автофлуоресценция, анатомические показатели

Цитологія і генетика
2020, том 54, № 6, 14-22

Current Issue
Cytology and Genetics
2020, том 54, № 6, 514–521,
doi: 10.3103/S0095452720060067

Повний текст та додаткові матеріали

Цитована література

1. Figueroa, M., Hammond-Kosack, K.E., and Solomon, P.S., A review of wheat diseases—a field perspective, Mol. Plant Pathol., 2018, vol. 19, no. 6, pp. 1523–1536. https://doi.org/10.1111/mpp.12618

2. Sundin, G.W., Castiblanco, L.F., Yuan, X., Zeng, Q., and Yang, C.H., Bacterial disease management: challenges, experience, innovation and future prospects: challenges in bacterial molecular plant pathology, Mol. Plant Pathol., 2016, vol. 17, no. 9, pp. 1506–1518. https://doi.org/10.1111/mpp.12436

3. Kolomiiets, Y.V., Grygoryuk, I.P., Butsenko, L.M., and Kalinichenko, A.V., Biotechnological control methods against phytopathogenic bacteria in tomatoes, Appl. Ecol. Environ. Res., 2019, vol. 17, no. 2, pp. 3215–3230. https://doi.org/10.15666/aeer/1702_32153230

4. Pfeilmeier, S., Caly, D.L., and Malone, J.G., Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in bacterial molecular plant pathology, Mol. Plant Pathol., 2016, vol. 17, no. 8, pp. 1298–1313. https://doi.org/10.1111/mpp.12427

5. Pasichnik, L.A., Savenko, E.A., Butsenko, L.N., Patyka, V.F., and Kalinichenko, A.B., Pseudomonas syringae in agrophytocenosis of wheat, Sci. World. Int. Sci. J., 2014, vol. 4, no. 8, pp. 52–56.

6. Butsenko, L.M., Pasichnyk, L.A., and Kolomiiets, Y.V., Biological properties of morphological dissociants Pseudomonas syringae pv. Atrofaciens, Biol. Syst.: Theory Innov., 2020, vol. 11, no. 1, pp. 28–37. https://doi.org/10.31548/biologiya2020.01.028

7. Valencia-Botin, A.J. and Cisneros-Lopez, M.E., A review of the studies and interactions of Pseudomonas syringae pathovars on wheat, Int. J. Agronom., 2012, vol. 2012, pp. 1–5.https://doi.org/10.1155/2012/692350

8. Tarkowski, P. and Vereecke, D., Threats and opportunities of plant pathogenic bacteria, Biotechnol. Adv., 2014, vol. 32, pp. 215–229. https://doi.org/10.1016/j.biotechadv.2013.11.001

9. Patyka, V.F., Phytopathogenic bacteria in contemporary agriculture, Microbiol. J., 2016, vol. 78, no. 6, pp. 71–83. https://doi.org/10.15407/microbiolj78.06.071

10. Pieterse, M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C.M., and Bakker, P.A.H.M., Induced systemic resistance by beneficial microbes, Ann. Rev. Phytopathol., 2014, vol. 52, pp. 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

11. Nanda, A.K., Andrio, E., Marino, D., Pauly, N., and Dunand, C., Reactive oxygen species during plant-microorganism early interactions, J. Integr. Plant Biol., 2010, vol. 52, pp. 195–204. https://doi.org/10.1111/j.1744-7909.2010.00933.x

12. Ali, S., Ganai B.A., Kamili, A.N., Bhat, A.A., and Mir, Z.A., Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance, Microbiol. Res., 2018, vol. 212– 213, pp. 29–37.https://doi.org/10.1016/j.micres.2018.04.008

13. O’Brien, J.A., Daudi, A., Butt, V.S., and Bolwell, G.P., Reactive oxygen species and their role in plant defence and cell wall metabolism, Planta, 2012, vol. 236, pp. 765–779. https://doi.org/10.1007/s00425-012-1696-9

14. Singh, U.B., Malviya, D., Wasiullah, Singh, S., Pradhan, J.K., Singh, B.P., Roy, M., Imram, M., Pathak, N., Baisyal, B.M., Rai, J.P., Sarma, B.K., Singh, R.K., Sharma, P.K., Kaur, S.D., Manna, M.C., Sharma, S.K., and Sharma, A.K., Bioprotective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.), Microbiol. Res., 2016, vol. 192, pp. 300–312. https://doi.org/10.1016/j.micres.2016.08.007

15. Bardin, M., Ajouz, S.,Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., and Nicot, P.C., Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?, Front. Plant Sci., 2015; vol. 6, p. 566. https://doi.org/10.3389/fpls.2015.00566

16. Köberl, M., Ramadan, E.M., Adam, M., Cardinale, M., Hallmann, J., Heuer, H., Smalla, K., and Berg, G., Bacillus and Streptomyces were selected as broad-spectrum antagonists against soil-borne pathogens from arid areas in Egypt, FEMS Microbiol. Lett., 2013, vol. 342, pp. 168–178. https://doi.org/10.1111/1574-6968.12089

17. Syed-Ab Rahman, S.F., Carvalhais, L.C., Chua, E., Xiao, Y., Wass, T.J., and Schenk, P.M., Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth, Front. Plant Sci., 2018, vol. 9, p. 1502.https://doi.org/10.3389/fpls.2018.01502

18. Shoaib, A., Awan, Z.A., and Khan, K.A., Intervention of antagonistic bacteria as a potential in-ducer of disease resistance in tomato to mitigate early blight, Sci. Hortic., 2019, vol. 252. pp. 20–28. https://doi.org/10.1016/j.scienta.2019.02.073

19. Garcia-Fraile, P., Menendez, E., and Rivas, R., Role of bacterial biofertilizers in agriculture and forestry, AIMS Bioeng., 2015, no. 2, pp. 183–205. https://doi.org/10.3934/bioeng.2015.3.183

20. Mnif, I., Ghribi, D., Potential of bacterial derived biopesticides in pest management, Crop Prot., 2015, vol. 77, pp. 52–64. https://doi.org/10.1016/j.cropro.2015.07.017

21. Lastochkina, O., Seifikalhor, M., Aliniaeifard, S., and Baymiev, A., Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables, Plants, 2019, no. 8, pp. 1–24. https://doi.org/10.3390/plants8040097

22. Patyka, V.P., Pasichnyk, L.A., Hvozdiak, R.I., Petrychenko, V.F., Korniichuk, O.V., Butsenko, L.M., Zhytkevych, N.V., Dankevych, L.A., Lytvynchuk, O.A., Kyrylenko, L.V., Moroz, S.M., Huliaieva, H.B., Hnatiuk, T.T., Kalinichenko, A.V., and Kharkhota, M.A., in Phytopathogenic Bacteria. Research Methods, Vinnytsia: Vindruk, 2017, pp. 84–87.

23. Kolomiiets, Y., Grygoryuk, I., Likhanov, A., Butsenko, L., and Blume, Y., Induction of bacterial canker resistance in tomato plants using plant growth promoting rhizobacteria, Open Agricult. J., 2019, vol. 13. pp. 215–222. https://doi.org/10.2174/18743315019130-10215

24. Pellicciari, C. and Biggiogera, M., Histochemistry of Single Molecules. Methods and Protocols, Humana Press, 2017, pp. 313–37.

25. Zubairova, U.S. and Doroshkov, A.V., Wheat leaf epidermis pattern as a model for studying the influence of stressful conditions on morphogenesis, Vavilov. J. Genet. Breed., 2018; vol. 22, no. 7, pp. 837–844. https://doi.org/10.18699/VJ18.32-o

26. Yang, C. and Ye, Z., Trichomes as models for studying plant cell differentiation, Cell. Mol. Life Sci., 2013, vol. 70, no. 11, pp. 1937–1948. https://doi.org/10.1007/s00018-012-1147-6

27. Goswami, D., Thakker, J.N., and Dhandhukia, P.C., Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review, Cogent. Food Agric., 2016, vol. 2, no. 1, pp. 1–19. https://doi.org/10.1080/23311932.2015.1127500

28. Hashem, A., Tabassum, B., and Abd Allah, E.F., Bacillus subtilis: a plant-growth promoting Rhizobacterium that also impacts biotic stress, Saudi J. Biol. Sci., 2019, vol. 26, no. 6, pp. 1291–1297. doi 10.10l6/j.sjbs.2019.05.004

29. Kudoyarova, G.R., Melentiev, A.I., Martynenko, E.V., Timergalina, L.N., Arkhipova, T.N., Shendel, G.V., Kuz’mina, L.Y., Dodd, I.C., and Veselov, S.Y., Cytokinin producing bacteria stimulate amino acid deposition by wheat roots, Plant Physiol. Biochem., 2014, vol. 83. pp. 285–291.https://doi.org/10.1016/j.plaphy.2014.08.015

30. Sarma, B.K., Yadav, S.K., Singh, S., and Singh, H.B., Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy, Soil Biol. Biochem., 2015, vol. 87. pp. 25–33. doi 10.10l6/j.soilbio.2015.04.001

31. Chowdappa, P., Kumar, S.M., Lakshmi, M.J., and Upreti, K., Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3, Biol. Contr., 2013, vol. 65, no. 1, pp. 109–117. https://doi.org/10.10l6/j.biocontrol.2012.11.009

32. Martinez-Medina, A., Fernandez, I., Sanchez-Guzman, M.J., Jung, S.C., Pascual, J.A., and Pozo, M.J., Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato, Front. Plant Sci., 2013, vol. 4, pp. 1–12. https://doi.org/10.3389/fpls.2013.00206

33. García-Gutiérrez, M.S., Ortega-Álvaro, A., Busquets-García, A., Pérez-Ortiz, J.M., Caltana, L., Ricatti, M.J., and Manzanares, J. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors, Neuropharmacology, 2013, vol. 73, pp. 388–396. doi 10.10l6/j.neuropharm.2013.05.034

34. Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P., Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents, Genet. Mol. Biol., 2012, vol. 35, no. 4, pp. 1044–1051. https://doi.org/10.1590/sl415-47572012000600020

35. Kachroo, A. and Robin, G.P., Systemic signaling during plant defense, Curr. Opin. Plant Biol., 2013, vol. 16, pp. 527–533. doi 10.10l6/j.pbi.2013.06.019

36. Zeng, Y., Himmel, M.E., and Ding, S.-Y., Visualizing chemical functionality in plant cell walls, Biotechnol. Biofuels, 2017, vol. 10, p. 263. https://doi.org/10.1186/sl3068-017-0953-3