Цитологія і генетика 2020, том 54, № 4, 80-86
Cytology and Genetics 2020, том 54, № 4, 347–352, doi: https://www.doi.org/10.3103/S0095452720040118

Молекулярные механизмы нарушения хондро- и остеогенеза при остеоартрите и пути их коррекции

Торгомян А.Л., Сароян М.Ю.

  • Ереванский Государственный Медицинский Университет (ЕГМУ), кафедра физиологии ул. Корьюна 2, Ереван, Армения

Исследования, посвященные проблеме регулирования процесса хондрогенеза и клеточной инженерии хрящевой ткани, в настоящее время остаются актуальными, учитывая степень возрастания распространенности остеодегенеративных ортопедических заболеваний. Был осуществлен анализ литературных данных посвященных изучению молекулярных изменений, развивающихся в хрящевой ткани при остеортрите (ОА). По ключевым словам был произведен поиск в международных и отечественных базах данных. Отобрано 40 источников, подходящих по тематике. Были идентифицированы многие биологические регуляторы с анализом возможности их включения в процессы остео- и хондрогенеза. Изучение биомаркеров ОА, а также последующая регуляции хондрогенеза различными молекулами, является будущим в технике клеточной инженерии хрящевой ткани с целью восстановления хряща поврежденного ОА.

Ключові слова: хондроциты, стволовые клетки, дифференцировка

РЕЗЮМЕ. Дослідження, присвячені проблемі регулювання процесу хондрогенезу та клітинної інженерії хрящової тканини, на сьогодні залишаються актуальними, беручи до уваги ступінь підвищення розповсюдження остеодегенеративних ортопедичних захворювань. Був реалізований аналіз літературних даних, де вивчали дослідження молекулярних змін, які спостерігаються в хрящовій тканині за остеоартриту. За ключовими словах було проведено пошук міжнародних та національних баз даних. Відібрано 40 джерел, відповідних за даною тематикою. Було ідентифіковано біологічні біорегулятори з аналізом можливості їх включення в процеси остео- та хондрогенезу. Вивчення біомаркерів остеоартриту, а також наступна регуляція хондрогенезу різними молекулами, є наступним кроком у техніці клітинної інженерії хрящової тканини з цільовим відтворенням хряща, пошкодженого остеоартритом.

Цитологія і генетика
2020, том 54, № 4, 80-86

Current Issue
Cytology and Genetics
2020, том 54, № 4, 347–352,
doi: 10.3103/S0095452720040118

Повний текст та додаткові матеріали

Цитована література

1. Li, G., Yin, J., Gao, G., Cheng T.S., Pavlos, N.J., Zhang, C., and Zheng, M.H., Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes, Arthrit. Res. Ther., 2013, vol. 15, p. 223. https://doi.org/10.1186/ar4405

2. Ryd, L., Brittberg, M., Eriksson, K., Jurvelin, J.S., Lindahl, A., Marlovits, S., Moller, P., Richardson, J.B., Steinwachs, M., and Zenobi-Wrong, M., Pre-osteoarthritis: definition and diagnosis of an elusive clinical entity, Cartilage, 2015, vol. 6, no. 3, pp. 156–165. https://doi.org/10.1177/1947603515586048

3. Katayama, K., Kuriki, M., Kamiya, T., Tochigi, Y., and Suzuki, H., Giantin is required for coordinated production of aggrecan, link protein and type XI collagen during chondrogenesis, Biochem. Biophys. Res. Commun., 2018, vol. 499, no. 3, pp. 459–465. https://doi.org/10.1016/j.bbrc.2018.03.163

4. Ikehata, M., Yamada, A., Fujita, K., Yoshida, Y., Kato, T., Sakashita, A., Ogata, H., Iijima, T., Kuroda, M., Chikazu, D, and Kamijo, R., Cooperation of Rho family proteins Rac1 and Cdc42 in cartilage development and calcified tissue formation, Biochem. Biophys. Res. Commun., 2018, vol. 500, no. 3, pp. 525–529. https://doi.org/10.1016/j.bbrc.2018.04.032

5. Tan, Q., Chen, B., Wang, Q., Xu, W., Wang, Y., Lin, Z., Luo, F., Huang, S., Zhu, Y., Su, N., Jin, M., Li, C., Kuang, L., Qi, H., Ni, Z., Wang, Z., Luo, X., Jiang, W., Chen, H., Chen, S., Li, F., Zhang, B., Huang, J., Zhang, R., Jin K1, Xu, X., Deng, C., Du, X., Xie, Y., and Chen, L., A novel FGFR1-binding peptide attenuates the degeneration of articular cartilage in adult mice, Osteoarthritis Cartilage, 2018, vol. 18, pp. 31 434–31 431. pii: S1063-4584.https://doi.org/10.1016/j.joca.2018.08.012

6. Roh, J.S. and Sohn, D.H., Damage-associated molecular patterns in inflammatory diseases, Immun. Netw., 2018, vol. 18, no. 4, e27.https://doi.org/10.4110/in.2018.18.e27

7. Zhong, D., Zhang, M., Yu, J., and Luo, Z.P., Local tensile stress in the development of posttraumatic osteoarthritis, BioMed Res. Int., 2018, vol. 2018, Article ID 4210353. https://doi.org/10.1155/2018/421035

8. Osiecka-Iwan, A., Hyc, A., Radomska-Lesniewska, D.M., Rymarczyk, A., and Skopinski, P., Antigenic and immunogenic properties of chondrocytes, implications for chondrocyte therapeutic transplantation and pathogenesis of inflammatory and degenerative joint diseases, Cent. Eur. J. Immunol., 2018, vol. 43, no. 2, pp. 209–219. https://doi.org/10.5114/ceji.2018.77392

9. Kraus, V.B., Nevitt, M., and Sandell, L.J., Summary of the OA biomarkers workshop 2009 – biochemical biomarkers: biology, validation, and clinical studies, Osteoarthritis Cartilage, 2010, vol. 18, no. 6, pp. 742–745. https://doi.org/10.1016/j.joca.2010.02.014

10. Kraus, V.B., Waiting for action on the osteoarthritis front, Curr. Drug. Targets, 2010, vol. 11, no. 5, pp. 518–20. PMID 20199398.

11. Freeston, J.E., Garnero, P., Wakefield, R.J., Hensor, E.M., Conaghan, P.G., and Emery, P., Urinary type II collagen terminal peptide is associated with synovitis and predicts structural bone loss in very early inflammatory arthritis, Ann. Rheum. Dis., 2011, vol. 70, no. 2, pp. 331–333.https://doi.org/10.1136/ard.2010.129304

12. Duan, Y., Hao, D., Li, M. Wu, Z., Li, D., Yang, X., and Qui, G., Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis, Rheumatol. Int., 2012, vol. 32, no. 4, pp. 985–990. https://doi.org/10.1007/s00296-010-1731-8

13. Ishijima, M., Watari, T., Naito, K., Kaneko, H., Futami, I., Ioshimuda-Ishida, K., Tomonaga, A., Yamaguchi, H., Yamamoto, T., Nagaoka, I., Kurosawa, H., Poole, R.A., and Kaneko, K., Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis, Arthritis Res. Ther., 2011, vol. 13, no. 1, R22. https://doi.org/10.1186/ar3246

14. Kokebie, R., Aggarwal, R., Lidder, S., Hakimian, A., Ruegel, D.C., Block, J.A., and Chubinskaya, S., The role of synovial fluid markers of catabolism and anabolism in osteoarthritis, rheumatoid arthritis and asymptomatic organ donors, Arthritis Res. Ther., 2011, vol. 13, no. 2, R501. https://doi.org/10.1186/ar3293

15. Patra, D. and Sandell, L., Evolving biomarkers in osteoarthritis, J. Knee Surg., 2011, vol. 24, pp. 241–250. PMID .22303753

16. Occhetta, P., Pigeot, S., Rasponi, M., Dasen, B., Mehrkens, A., Ullrich, T., Kramer, I., Guth-Gundel, S., Barbero, A., and Martin, I., Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 18, pp. 4625–4630. https://doi.org/10.1073/pnas.1720658115

17. Handorf, A.M., Chamberlain, C.S., and Li, W.J., Endogenously produced Indian hedgehog regulates TGFb-driven chondrogenesis of human bone marrow stromal/stem cells, Stem. Cells Dev., 2015, vol. 24, pp. 995–1007. https://doi.org/10.1089/scd.2014.0266

18. Oseni, A.O., Crowley, C., Boland, M.Z., Butler, P.E., and Seifalian, A.M., Cartilage tissue engineering: the application of nanomaterials and stem cell technology, Tiss. Eng. Regen. Med., 2011. https://doi.org/10.5772/22453

19. Correa, D., Somoza, R.A., Lin, P., Greenberg, S., Rom, E., Duesler, L., Welter, J.F., Yayon, A., and Caplan, A.I., Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation, Osteoarthr. Cartil., 2015, vol. 23, pp. 443–453. https://doi.org/10.1016/j.joca.2014.11.013

20. Hellingman, C.A., Davidson, E.N., Koevoet, W., Vitters, E.L., van den Berg, W.B., van Osch, G.J.V.M., and van der Kraan, P.M., Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification, Tiss. Eng. Part. A, 2011, vol. 17, pp. 1157–1167. https://doi.org/10.1089/ten.TEA.2010.0043

21. Richter W., Bock, R., Hennig, T., and Weiss, S., Influence of FGF-2 and PTHrP on chondrogenic differentiation of human mesenchymal stem cells, J. Bone Jt. Surg. Br., 2009, vol. 91B, suppl. III, p. 444. https://doi.org/10.1302/0301-620X.91BSUPP_III.0910444c

22. Narcisi, R., Cleary, M.A., Brama, P.A.,Hoogduijn, M.J., Tuysuz, N., Berge, D., and van Osch, G.J.V.M., Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation, Stem. Cell Rep., 2015, vol. 4, pp. 459–472. https://doi.org/10.1016/j.stemcr.2015.01.017

23. Correa, D., Somoza, R.A., Lin, P., Greenberg, S., Rom. E., Duesler, L., Welter, J.F., Yayon, A., and Caplan, A.I., Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation, Osteoarthritis Cartillage, 2015, vol. 23, pp. 443–453. https://doi.org/10.1016/j.joca.2014.11.013

24. Dai, J., Wang, J., Lu, J., Zou, D., Sun, H., Dong, Y., Yu, H., Zhang, L., Yang, T., Zhang, X., Wang, X., and Shen, G., The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage, Biomaterials, 2012, vol. 33, pp. 7699–7711. https://doi.org/10.1016/j.biomaterials.2012.07.020

25. Govindarajan, V. and Overbeek, P.A., FGF9 can induce endochondral ossification in cranial mesenchyme, BMC Dev. Biol., 2006, vol. 6, p. 7. https://doi.org/10.1186/1471-213X-6-7

26. Jiang, X., Huang, X., Jiang, T., Zheng, L., Zhao, J., and Zhang, X., The role of Sox9 in collagen hydrogel-mediated chondrogenic differentiation of adult mesenchymal stem cells (MSCs), Biomater. Sci., 2018, vol. 6, no. 6, pp. 1556–1568. https://doi.org/10.1039/c8bm00317c

27. Cleary, M.A., van Osch, G.J., Brama, P.A., Hellingman, C.A., and Narcisi, R., FGF, TGFb and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells, J. Tiss. Eng. Regen., 2015, vol. 9, pp. 332–342. https://doi.org/10.1002/term.1744

28. Long, F. and Ornitz, D.M., Development of the endochondral skeleton, Cold Spring Harbor Perspect. Biol., 2013, vol. 5, a008334. https://doi.org/10.1101/cshperspect.a008334

29. Augustyniak, E., Trzeciak, T., Richter, M., Kaczmarczyk, J., and Suchorska, W., The role of growth factors in stem cell-directed chondrogenesis: a real hope for damaged cartilage regeneration, Int. Orthop., 2015, vol. 39, pp. 995–1003, https://doi.org/10.1007/s00264-014-2619-0

30. Madry, H., Rey-Rico, A., Venkatesan, J.K., John-Stone, B., and Cucchiarini, M., Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering, Tiss. Eng. Part B Rev., 2014, vol. 20, pp. 106–125. https://doi.org/10.1089/ten.TEB.2013.0271

31. Mu, Y., Gudey, S.K., and Landström, M., Non-Smad signaling pathways, Cell Tiss. Res., 2012, vol. 347, pp. 11–20. https://doi.org/10.1007/s00441-011-1201-y

32. Kamel, G., Hoyos, T., Rochard, L., Dougherty, M., Kong, Y., Tse, W., Shubinets, V., Grimaldi, M., and Liao, EC., Requirements for frzb and fzd7a in cranial neural crest convergence and extension mechanisms during zebrafish palate and jaw morphogenesis, Dev. Biol., 2013, vol. 381, pp. 423–433. https://doi.org/10.1016/j.ydbio.2013.06.012

33. Matsumoto, S., Fumoto, K., Okamoto, T., Kaibuchi, K., and Kikuchi, A., Binding of APC and di-shevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells, EMBO J., 2010, vol. 29, pp. 1192–1204. https://doi.org/10.1038/emboj.2010.26

34. Daoud, G., Kempf, H., Kumar, D., Kozhemyakina, E., Holowacz, T., Kim, D.W., Ionescu, A., and Lassar, A.B., BMP-mediated induction of GATA4/ 5/6 blocks somitic responsiveness to SHH, Development, 2014, vol. 141, pp. 3978–3987. https://doi.org/10.1242/dev.111906

35. Tsushima, H., Tang, Y.J., Puviindran, V., Hsu, S.C., Nadesan, P., Yu, C., Zhang, H., Mirando, A.J., Hilton, M.J., and Alman, B.A., Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis, Development, 2018, vol. 145, no. 13, dev162396. https://doi.org/10.1242/dev.162396

36. Handorf, A.M., Chamberlain, C.S., and Li, W.J., Endogenously produced Indian hedgehog regulates TGFb-driven chondrogenesis of human bone marrow stromal/stem cells, Stem. Cells Dev., 2015, vol. 24, pp. 995–1007. https://doi.org/10.1089/scd.2014.0266

37. Rutkowski, T.P., Kohn, A., Sharma, D., Ren, Y., Mirando, A.J., and Hilton, M.J., HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development, J. Cell Sci., 2016, vol. 129, no. 11, pp. 2145–2155. https://doi.org/10.1242/jcs.181271

38. Yang, A., Lu, Y., Xing, J., Li, Z., Yin, X., Dou, C., Dong, S., Luo, F., Xie, Z., Hou, T., and Xu, J., IL-8 enhances therapeutic effects of BMSCs on bone regeneration via CXCR2-mediated PI3k/Akt signaling pathway, Cell Physiol. Biochem., 2018, vol. 48, no. 1, pp. 361–370. https://doi.org/10.1159/000491742

39. Sarem, M., Heizmann, M., Barbero, A., Martin, I., and Shastri, V.P., Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 27, pp. 6135–6144. https://doi.org/10.1073/pnas.1805159115

40. Taheem, D.K., Foyt, D.A., Loaiza, S., Ferreira, S.A., Ilic, D., Auner, H.W., Grigoriadis, A.E., Jell, G., and Gentleman, E., Differential regulation of human bone marrow mesenchymal stromal cell chondrogenesis by hypoxia inducible factor-1α hydroxylase inhibitors, Stem. Cells, 2018, vol. 36, no. 9, pp. 1380–1392. https://doi.org/10.1002/stem.2844