Цитологія і генетика 2022, том 56, № 2, 14-20
Cytology and Genetics 2022, том 56, № 2, 118–124, doi: https://www.doi.org/10.3103/S0095452722020074

Особливості ядерно-ядерцевих показників насіннєвого потомства у різних за рівнем гетерозиготності материнських дерев сосни Станкевича (Pinus brutia Var. Stankewiczii Sukacz.)

Коршиков І.І., Білоножко Ю.О., Мільчевська Я.Г.

  1. Донецький ботанічний сад НАН України, Україна, 50089, Кривий Ріг, вул. Маршака 50
  2. Криворізький ботанічний сад НАН України, Україна, 50089, Кривий Ріг, вул. Маршака 50
  3. ДУ «Інститут харчової біотехнології та геноміки НАН України» Україна, 04123, Київ, вул. Осиповського, 2а

Проаналізовано ядерно-ядерцеві характеристики насіння Pinus brutia var. stankewiczii Sukacz. в умовах крайової частини ареалу та рекреаційного навантаження. Виявлено міжпопуляційний поліморфізм кількості ядерець та їх розмірів в клітинах проростків насіння P. brutia var. stankewiczii з південно-східного узбережжя Криму. Для популяції що зазнає рекреаційного навантаження відмічено зростання середньої площі ядерець в ядрі та зменшення ядерно-ядерцевого співвідношення, що вказує на підвищення функціональної активності генетичного апарату клітин у відповідь на дію несприятливих умов. Показано зміну ядерно-ядерцевих показників в залежності від рівню гетерозиготності материнських дерев. Для низькогетерозиготних рослин виявлено збільшення розмірів ядерець. Виявлені тенденції вказують на комплексний характер змін в клітинах насіннєвого потомства P. brutia var. stankewiczii.

Ключові слова: ядро, ядерце, рівень гетерозиготності, Pinus brutia var. stankewiczii Sukacz.

Цитологія і генетика
2022, том 56, № 2, 14-20

Current Issue
Cytology and Genetics
2022, том 56, № 2, 118–124,
doi: 10.3103/S0095452722020074

Повний текст та додаткові матеріали

Цитована література

Altukhov, Y.P. and Moskaleichik, F.F., Allozyme heterozygosity, metabolic rate, sexual maturation rate, and longevity, Dokl. Biol. Sci., 2006, vol. 410, pp. 416–420. https://doi.org/10.1134/S0012496606050218

Andersen, J.S., Lam, Y.W., Leung, A.K., et al., Nucleolar proteome dynamics, Nature, 2005, vol. 433, pp. 77–83. https://doi.org/10.1038/nature03207

Boulon, S., Westman, B.J., Hutten, S., et al., The nucleolus under stress, Mol. Cell, 2010, vol. 40, no. 2, pp. 216–227. https://doi.org/10.1016/j.molcel.2010.09.024

Britton-Davidian, J., Cazaux, B., and Catalan, J., Chromosomal dynamics of nucleolar organizer regions (NORs) in the house mouse: micro-evolutionary insights, Heredity, 2012, vol. 108, pp. 68–74. https://doi.org/10.1038/hdy.2011.105

Cantwell, H. and Nurse, P., Unravelling nuclear size control, Curr. Genet., 2019, vol. 65, pp. 1281–1285. https://doi.org/10.1007/s00294-019-00999-3

Chelomina, G.N., Rozhkovan, K.V., Burundukova, O.L., et al., Age-dependent and tissue-specific alterations in the rDNA clusters of the Panax ginseng C. A. Meyer cultivated cell lines, Biomolecules, 2020, vol. 10, no. 10, art. ID 1410. https://doi.org/10.3390/biom10101410

Derenzini, M., Pasquinelli, G., O’Donohue, M.-F., et al., Structural and functional organization of ribosomal genes within the mammalian cell nucleolus, J. Histochem. Cytochem., 2006, vol. 54, no. 2, pp. 131–145. https://doi.org/10.1369/jhc.5R6780.2005

De Storme, N. and Mason, A., Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance, Curr. Plant Biol., 2014, vol. 1, pp. 10–33. https://doi.org/10.1016/j.cpb.2014.09.002

Hein, N., Sanij, E., and Quin, J., et al., The nucleolus and ribosomal genes in aging and senescence, in Senescence, London: IntechOpen, 2012, pp. 171–208. https://doi.org/10.5772/34581

Book

Khrolenko, Yu.A., Burundukova, O.L., Lauve, L.S., et al., Characterization of the variability of nucleoli in the cells of Panax ginseng Meyer in vivo and in vitro, J. Ginseng Res., 2012, vol. 36, no. 3, vol. 322–326. https://doi.org/10.5142/jgr.2012.36.3.322

Korshikov, I.I. and Gorlova, E.M., Genetic structure, subdivision, and differentiation in stankewiczii pine (Pinus stankewiczii (Sukacz.) Fomin) populations from mountainous Crimea, Russ. J. Genet., 2006, vol. 42, no. 6, pp. 672–680. https://doi.org/10.1134/S1022795406060135

Korshikov, I.I., Tkacheva, Yu.A., and Privalikhin, S.N., Cytogenetic abnormalities in Norway spruce (Picea abies (L.) Karst.) seedlings from natural populations and an introduction plantation, Cytol. Genet., 2012, vol. 46, pp. 280–284. https://doi.org/10.3103/S0095452712050064

Korshikov, I.I., Lapteva, Ye.V., and Tkachova, Yu.A., Variation in quantitative-dimensional characteristics of nucleoli and nuclei in seed cells of Pinus pallasiana D. Don (protected and human-disturbed areas in the steppe zone of Ukraine), Ukr. Bot. J., 2013, vol. 70, no. 6, pp. 805–812.

Korshikov, I.I., Milchevskaya, Ya.G., Tkacheva, Yu.A., et al., Nuclear-nucleolar polymorphism in the regional populations off our species of conifers Factors, Exp. Evol. Org., 2013, vol. 12, pp. 50–54.

Korshikov, I.I., Tkachova, Yu.A., Lapteva, H.V, et al., The nucleus-nucleolus variation in seed progeny of Pinus sylvestris L. var. cretacea Kalenicz. ex Kom. among seed yield of different years from «Melovaya flora» natural reserve, Factors Exp. Evol. Org., 2014, vol. 15, pp. 196–200.

Korshikov, I.I., Kalafat, L.A., and Milchevskaya, Y.G., Genetic diversity and mating system of Pinus brutia var. Stankewiczii sukacz. in small localities of Sudak (Crimea), Cytol. Genet., 2015, vol. 49, no. 2, pp. 29–37. https://doi.org/10.3103/S0095452715020048

Krasikova, A. and Kulikova, T., Identification of genomic loci responsible for the formation of nuclear domains using lampbrush chromosomes, Noncoding RNA., 2019, vol. 6, no. 1, art. ID 1. https://doi.org/10.3390/ncrna6010001

Kumar, P. and Singhal, V.K., Nucleoli migration coupled with cytomixis, Biologia, 2016, vol. 71, pp. 651–659. https://doi.org/10.1515/biolog-2016-0076

Lafontaine, D.L.J., Riback, J.A., Bascetin, R., et al., The nucleolus as a multiphase liquid condensate, Nat. Rev. Mol. Cell Biol., 2021, vol. 22, pp. 165–182. https://doi.org/1038/s415 80-020-0272-6

Ma, T.-H., Lee, L.-W., Lee, Ch.-Ch., et al., Genetic control of nucleolar size: An evolutionary perspective, Nucleus, 2016, vol. 7, no. 2, pp. 112–120. https://doi.org/10.1080/19491034.2016.1166322

Ma, T.-H., Chen, P.-H., Chin-Ming Tan, B., et al., Size scaling of nucleolus in Caenorhabditis elegans embryos, Biomed. J., 2018, vol. 41, no. 5, pp. 333–336. https://doi.org/10.1016/j.bj.2018.07.003

Manzano, A.I., Herranz, R., Manzano, A., et al., Early effects of altered gravity environments on plant cell growth and cell proliferation: characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system, Front. Astron. Space Sci., 2016, vol. 3, art. ID 2. https://doi.org/10.3389/fspas.2016.00002

Mayer, C. and Grummt, I., Cellular stress and nucleolar function, Cell Cycle, 2005, vol. 4, no. 8, pp. 1036–1038. https://doi.org/10.4161/cc.4.8.1925

Montiel, E.E., Manrique-Poyato, M.I., Rocha-Sánchez, S.M., et al., Nucleolus size varies with sex, ploidy and gene dosage in insects, Physiol. Entomol., 2012, vol. 37, pp. 145–152. https://doi.org/10.1111/j.1365-3032.2011.00822.x

Olson, M.O. and Dundr, M., Nucleolus: Structure and Function, Chichester: Wiley, 2015. https://doi.org/10.1002/9780470015902.a0005975.pub3

Book

Severine, B., Westman, B.J., Saskia, H., et al., The nucleolus under stress, Mol. Cell, 2010, vol. 40, no. 2, pp. 216–227. https://doi.org/10.1016/j.molcel.2010.09.024

Sobol, M.A., Role of the nucleolus in plant cell response to environmental physical factors, Cytol. Genet., 2001, vol. 35, no. 3, pp. 72–84.

Tikhonova, I.V., Correlations of heterozygosity with sexual type and sensitivity of Pinus sylvestris L. trees to the influence of environmental factors, Contemp. Probl. Ecol., 2015, vol. 8, pp. 457–463. https://doi.org/10.1134/S1995425515040149

Tkachova, Yu.O. and Korshikov, I.I., Nuclear-nuclear polymorphism of the seed progeny Picea abies (L.) Karst. (Pinaceae) in natural populations and introductory stands, Ukr. Bot. J., 2012, vol. 69, no. 6, pp. 919–925.

Velichko, A.K., Razin, S.V., Kantidze, O.L., DNA damage response in nucleoli, Mol. Biol., 2021, vol. 55, pp. 182–192. https://doi.org/10.1134/S002689332102014X

Voytyuk, V. and Andreeva, V., Nucleolus activity in sprout meristem of scotch pine plus trees, Bull. Ukr. Assoc. Genet. Breed., 2009, vol. 7, no. 2, pp. 177–183.

Yang, K., Yang, J., and Yi, J., Nucleolar stress: hallmarks, sensing mechanism and diseases, Cell Stress, 2018, vol. 2, no. 6, pp. 125–140. https://doi.org/10.15698/cst2018.06.139

Zharskaia, O.O. and Zatsepina, O.V., Dynamics and mechanisms of the nucleolus reorganization during mitosis, Tsitologiia, 2007, vol. 49, no. 5, pp. 355–369. https://doi.org/10.1134/S1990519X07040013