Цитологія і генетика 2022, том 56, № 3, 55-64
Cytology and Genetics 2022, том 56, № 3, 253–260, doi: https://www.doi.org/10.3103/S0095452722030033

Регенерація м’язових волокон скелетних м’язів та регуляція метаболізму міосателітоцитів

Гащишин В., Тимочко-Волошин Р., Параняк Н., Вовканич Л., Гложик І., Трач В., Музика Ф., Серафин Ю., Приступа Є., Борецький Ю.

  1. Львівський державний університет фізичної культури імені І. Боберського Україна, 79007, Львів, вул. Костюшка, 11
  2. Львівський національний медичний університет імені Данила Галицького Україна, 79010, Львів, вул. Пекарська, 69
  3. Інститут біології тварин НААН Україна, 79034, Львів, вул. Василя Стуса 38

Скелетні м’язи є гетерогенною тканиною, яка містить скоротливі волокна різних типів. Їх співвідношення залежить від спадковості,  типу тренувань, статі, віку і типу м’яза. Крім цього, у м’язовій тканині наявні у великих кількостях стовбурові клітини – міосателітоцити. Міосателітоцити є основним матеріалом для регенерації мікропошкоджень м’язових волокон, які завжди спостерігаються при інтенсивних фізичних навантаженнях. Міосателітоцити здатні до тривалого зберігання в неактивному «сплячому» стані, але можуть швидко активуватись, щоб забезпечити ефективне відновлення пошкоджених м’язових волокон. Метаболізм міосателітоцитів і міобластів та їх міграція в зону пошкодження регулюються складною системою цитокінів та транскрипційних факторів, активність яких залежить від багатьох чинників. Детермінуючим фактором є мікропошкодження, які ініціюють розвиток запального процесу і активацію міосателітоцитів. Дослідження молекулярних механізмів взаємозв’язку запальних процесів м’язової тканини та змін метаболізму міосателітоцитів має фундаментальне значення та є необхідним для підбору ефективних методів відновлення м’язової тканини.

Ключові слова: міосателітоцити, нуклеотидні полі-морфізми, транскрипційні фактори, скелетні м’язи, регенерація

Цитологія і генетика
2022, том 56, № 3, 55-64

Current Issue
Cytology and Genetics
2022, том 56, № 3, 253–260,
doi: 10.3103/S0095452722030033

Повний текст та додаткові матеріали

Цитована література

Abreu, P., Serna, J.D.C., Munhoz, A.C., and Kowaltowski, A.J., Calorie restriction changes muscle satellite cell proliferation in a manner independent of metabolic modulation, Mech. Ageing Dev., 2020, vol. 192, art. ID 111362. https://doi.org/10.1016/j.mad.2020.111362

Ahmetov, I.I., Druzhevskaya, A., Lyubaeva, E.V., Popov, D.V., Vinogradova, O.L., Williams, A.G., The dependence of preferred competitive racing distance on muscle fibre composition and ACTN3 genotype in speed skaters, Exp. Physiol., 2011, vol. 96, no. 12, pp. 1302–1310. https://doi.org/10.1113/expphysiol.2011.060293

Anderson, J.E., A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells, Mol. Biol. Cell., 2000, vol. 11, no. 5, pp. 1859–1874. https://doi.org/10.1091/mbc.11.5.1859

Bisetto, S., Wright, M.C., Nowak, R.A., Lepore, A.C., Khurana, T.S., Loro, E., and Philp, N.J., New insights into the lactate shuttle: role of MCT4 in the modulation of the exercise capacity, Science, 2019, vol. 22, pp. 507–518. https://doi.org/10.1016/j.isci.2019.11.041

Blondelle, J., Shapiro, P., Domenighetti, A.A., and Lange, S., Cullin E3 ligase activity is required for myoblast differentiation, J. Mol. Biol., 2017, vol. 429, no. 7, pp. 1045–1066. https://doi.org/10.1016/j.jmb.2017.02.012

Bosch-Presegue, L. and Vaquero, A., Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity, FEBS J., 2015, vol. 282, no. 9, pp. 1745–1767. https://doi.org/10.1111/febs.13053

Brack, A.S., Conboy, M.J., Roy, S., Lee, M., Kuo, C.J., Keller, C., and Rando, T.A., Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis, Science, 2007, vol. 317, no. 5839, pp. 807–810. https://doi.org/10.1126/science.1144090

Brack, A.S. and Rando, T.A., Tissue-specific stem cells: lessons from the skeletal muscle satellite cell, Cell Stem Cell, 2012, vol. 10, no. 5, pp. 504–514. https://doi.org/10.1016/j.stem

Britto, F.A., Gnimassou, O., De Groote, E., Balan, E., Warnier, G., Everard, A., Cani, P.D., and Deldicque, L., Acute environmental hypoxia potentiates satellite cell-dependent myogenesis in response to resistance exercise through the inflammation pathway in human, FASEB J., 2020, vol. 34, no, 1, pp. 1885–1900. https://doi.org/10.1096/fj.201902244R

Canto, C. and Auwerx, J., Calorie restriction: is AMPK a key sensor and effector?, Physiology, 2011, vol. 26, pp. 214–224. https://doi.org/10.1152/physiol.00010.2011

Cerletti, M., Jang, Y.C., Finley, L.W., Haigis, M.C., and Wagers, A.J., Short-term calorie restriction enhances skeletal muscle stem cell function, Cell Stem Cell, 2012, vol. 10, no. 5, pp. 515–519. https://doi.org/10.1016/j.stem.2012.04.002

Collins-Hooper, H., Woolley, T.E., Dyson, L., Patel, A., Potter, P., Baker, R.E., Gaffney, E.A., Maini, P.K., Dash, P.R., and Patel, K., Age-related changes in speed and mechanism of adult skeletal muscle stem cell migration, Stem Cells, 2012, vol. 30, no. 6, pp. 1182–1195. https://doi.org/10.1002/stem.1088

Dell’Orso, S., Juan, A.H., Ko, K.D., Naz, F., Perovanovic, J., Gutierrez-Cruz, G., Feng, X., and Sartorelli, V., Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions, Development, 2019, vol. 146, no. 12, art. ID dev174177. https://doi.org/10.1242/dev.174177

Dong, Z., Saikumar, P., Weinberg, J.M., and Venkatachalam, M.A., Calcium in cell injury and death, Annu. Rev. Pathol., 2006, vol. 1, pp. 405–434. https://doi.org/10.1146/annurev.pathol.1.110304.100218

Fang, Y., Tang, S., and Li, X., Sirtuins in metabolic and epigenetic regulation of stem cells, Trends Endocrinol. Metab., 2019, vol. 30, pp. 177–188. https://doi.org/10.1016/j.tem.2018.12.002

Fuchs, E. and Chen, T., A matter of life and death: self-renewal in stem cells, EMBO Rep., 2013, vol. 14, no. 1, pp. 39–48. https://doi.org/10.1038/embor.2012.197

Fukada, S., Uezumi, A., Ikemoto, M., Masuda, S., Segawa, M., Tanimura, N., Yamamoto, H., Miyagoe-Suzuki, Y. and Takeda, S., Molecular signature of quiescent satellite cells in adult skeletal muscle, Stem Cells, 2007, vol. 25, no. 10, pp. 2448–2459. https://doi.org/10.1634/stemcells.2007-0019

Fuku, N., Kumagai, H., and Ahmetov, I., Genetics of muscle fiber composition, in Sports, Exercise, and Nutritional Genomics, 2019, vol. 14, pp. 295–314. https://doi.org/10.1016/B978-0-12-816193-7.00014-2

Book

Gerrits, M.F., Ghosh, S., Kavaslar, N., Hill, B., Tour, A., Seifert, E.L., Beauchamp, B., Gorman, S., Stuart, J., Dent, R., McPherson, R., and Harper, M.E., Distinct skeletal muscle fiber characteristics and gene expression in diet-sensitive versus diet-resistant obesity, J. Lipid Res., 2010, vol. 51, no. 8, pp. 2394–2404. https://doi.org/10.1194/jlr.P005298

Haizlip, K.M., Harrison, B.C., and Leinwand, L.A., Sex-based differences in skeletal muscle kinetics and fiber-type composition, Physiology, 2015, vol. 30, no. 1, pp. 30–39. https://doi.org/10.1152/physiol.00024.2014

Halestrap, A.P. and Wilson, M.C., The monocarboxylate transporter family—Role and regulation, IUBMB Life, 2012, vol. 64, no. 2, pp. 109–119. https://doi.org/10.1002/iub.572

Hardie, D.G., Ross, F.A., and Hawley, S.A., AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell. Biol., 2012, vol. 13, no. 4, pp. 251–262. https://doi.org/10.1038/nrm3311

Hendrickse, P.W., Venckunas, T., Platkevicius, J., Kairaitis, R., Kamandulis, S., Snieckus, A., Stasiulis, A., Vitkiene, J., Subocius, A., and Degens, H., Endurance training-induced increase in muscle oxidative capacity without loss of muscle mass in younger and older resistance-trained men, Eur. J. Appl. Physiol., 2021, vol. 121, no. 11, pp. 3161–3172. https://doi.org/10.1007/s00421-021-04768-4

Jing, H. and Lin, H., Sirtuins in epigenetic regulation, Chem. Rev., 2015, vol. 115, no. 6, pp. 2350–2375. https://doi.org/10.1021/cr500457h

Kantarci, A. and Van Dyke, T.E., Lipoxins in chronic inflammation, Crit. Rev. Oral Biol. Med., 2003, vol. 14, no. 1, pp. 4–12. https://doi.org/10.1177/154411130301400102

Karalaki, M., Fili, S., Philippou, A. and Koutsilieris, M., Muscle regeneration: cellular and molecular events, In Vivo, 2009, vol. 23, no. 5, pp. 779–796.

Klein, C.S., Marsh, G.D., Petrella, R.J., and Rice, C.L., Muscle fiber number in the biceps brachii muscle of young and old men, Muscle Nerve, 2003, vol. 28, no. 1, pp. 62–68. https://doi.org/10.1002/mus.10386

Kumagai, H., Tobina, T., Ichinoseki-Sekine, N., Kakigi, R., Tsuzuki, T., Zempo, H., Shiose, K., Yoshimura, E., Kumahara, H., Ayabe, M., Higaki, Y., Yamada, R., Kobayashi, H., Kiyonaga, A., Naito, H., Tanaka, H., Fuku, N., Role of selected polymorphisms in determining muscle fiber composition in Japanese men and women, J. Appl. Physiol., 2018, vol. 124, no. 5, pp. 1377–1384. https://doi.org/10.1152/japplphysiol.00953.2017

Kumar, V., Abbas, A.K. and Aster, J.C., Robbins Basic Pathology, Elsevier, 2012.

Kutseryb, T., Hrynkiv, M., Vovkanych, L., and Muzyka, F., Influence of basketball training on the features of women’s physique, J. Phys. Educ. Sport, 2019, vol. 19, no. 4, pp. 2384–2389. https://doi.org/10.7752/jpes.2019.04361

Lamont, L.A., Tranquilli, W.J., and Grimm, K.A., Physiology of pain, Vet. Clin. North Am. Small Anim. Pract., 2000, vol. 30, no. 4, pp. 703–728. https://doi.org/10.1016/s0195-5616(08)70003-2

Latil, M., Rocheteau, P., Chatre, L., Sanulli, S., Mémet, S., Ricchetti, M., Tajbakhsh, S., and Chrétien, F., Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity, Nat. Commun., 2012, vol. 3, art. ID 903. https://doi.org/10.1038/ncomms1890

Le Moal, E., Pialoux, V., Juban, G., Groussard, C., Zouhal, H., Chazaud, B., and Mounier, R., Redox control of skeletal muscle regeneration, Antioxid. Redox Signal, 2017, vol. 27, no. 5, 276–310. https://doi.org/10.1089/ars.2016.6782

Liu L, Cheung, T.H., Charville, G.W., Hurgo, B.M., Leavitt, T., Shih, J., Brunet, A., and Rando, T.A., Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging, Cell Rep., 2013, vol. 4, no. 1, pp. 189–204. https://doi.org/10.1016/j.celrep.2013.05.043

Marzetti, E., Lawler, J.M., Hiona, A., Manini, T., Seo, A.Y., and Leeuwenburgh, C., Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle, Free Radical Biol. Med., 2008, vol. 44, no. 2, pp. 160–168. https://doi.org/10.1016/j.freeradbiomed.2007.05.028

Mauro, A., Satellite cell of skeletal muscle fibers, J. Biophys. Biochem. Cytol., 1961, vol. 9, no. 2, pp. 493–495. https://doi.org/10.1083/jcb.9.2.493

Mayer, U., Integrins: redundant or important players in skeletal muscle?, J. Biol. Chem., 2003, vol. 278, no. 17, pp. 14587–14590. https://doi.org/10.1074/jbc.R200022200

May-Simera, H.L. and Kelley, M.W., Cilia, Wnt signaling, and the cytoskeleton, Cilia, 2012, vol. 1, no. 1, art. ID 7. https://doi.org/10.1186/2046-2530-1-7

Moussaieff, A., Rouleau, M., Kitsberg, D., Cohen, M., Levy, G., Barasch, D., Nemirovski, A., Shen-Orr, S., Laevsky, I., Amit, M., Bomze, D., Elena-Herrmann, B., Scherf, T., Nissim-Rafinia, M., Kempa, S., Itskovitz-Eldor, J., Meshorer, E., Aberdam, D., and Nahmias, Y., Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells, Cell Metab., 2015, vol. 21, no. 3, pp. 392–402. https://doi.org/10.1016/j.cmet.2015.02.002

Nalbandian, M., Radak, Z., and Takeda, M., Lactate metabolism and satellite cell fate, Front. Physiol., 2020, vol. 11, art. ID 610983. https://doi.org/10.3389/fphys.2020.610983

Nathan, C. and Cunningham-Bussel, A., Beyond oxidative stress: an immunologist’s guide to reactive oxygen species, Nat. Rev. Immunol., 2013, vol. 13, pp. 349–361. https://doi.org/10.1038/nri3423

Needleman, P., Turk, J., Jakschik, B.A., Morrison, A.R., and Lefkowith, J.B., Arachidonic acid metabolism, Annu. Rev. Biochem., 1986, vol. 55, pp. 69–102. https://doi.org/10.1146/annurev.bi.55.070186.000441

Oishi, Y., Tsukamoto, H., Yokokawa, T., Hirotsu, K., Shimazu, M., Uchida, K., Tomi, H., Higashida, K., Iwanaka, N., and Hashimoto, T., Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy, J. Appl. Physiol., 2015, vol. 118, no. 6, pp. 742–749. https://doi.org/10.1152/japplphysiol.00054.2014

Otto, A., Collins-Hooper, H., Patel, A., Dash, P.R., and Patel, K., Adult skeletal muscle stem cell migration is mediated by a blebbing/amoeboid mechanism, Rejuvenation Res., 2011, vol. 14, no. 3, pp. 249–260. https://doi.org/10.1089/rej.2010.1151

Pallafacchina, G., Blaauw, B., and Schiaffino, S., Role of satellite cells in muscle growth and maintenance of muscle mass, Nutr., Metab. Cardiovasc. Dis., 2013, vol. 23, pp. 12–18. https://doi.org/10.1016/j.numecd2012.02.002D

Kaipainen, A., Greene, E.R., and Huang, S., Cytochrome P450-derived eicosanoids: the neglected pathway in cancer, Cancer Metastasis Rev., 2010, vol. 29, no. 4, pp. 723–735. https://doi.org/10.1007/s10555-010-9264-x

Quintero, A.J., Wright, V.J., Fu, F.H., and Huard, J., Stem cells for the treatment of skeletal muscle injury, Clin. Sports Med., 2009, vol. 28, no. 1, pp. 1–11. https://doi.org/10.1016/j.csm.2008.08.009

Radmark, O., Werz, O., Steinhilber, D., and Samuelsson, B., 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease, Biochim. Biophys. Acta, 2015, vol. 1851, no. 4, pp. 331–339. https://doi.org/10.1016/j.bbalip.2014.08.012

Ricciotti, E. and FitzGerald, G.A., Prostaglandins and inflammation, Arterioscler., Thromb., Vasc. Biol., 2011, vol. 31, no. 5, pp. 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449

Rocheteau, P., Vinet, M., and Chretien, F., Dormancy and quiescence of skeletal muscle stem cells, Results Probl. Cell Differ., 2015, vol. 56, pp. 215–235. https://doi.org/10.1007/978-3-662-44608-9_10

Ryall, J.G., Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration, FEBS J., 2013, vol. 280, pp. 4004–4013. https://doi.org/10.1111/febs.12189

Schmidt, M., Schüler, S.C., Hüttner, S.S., von Eyss, B., and von Maltzahn, J., Adult stem cells at work: regenerating skeletal muscle, Cell Mol. Life Sci., 2019, vol. 76, no. 13, pp. 2559–2570. https://doi.org/10.1007/s00018-019-03093-6

Schoenfeld, B.J., The mechanisms of muscle hypertrophy and their application to resistance training, J. Strength Cond. Res., 2010, vol. 24, no. 10, pp. 2857–2872. https://doi.org/10.1519/JSC.0b013e3181e840f3

Scott, W., Stevens, J., and Binder-Macleod, S.A., Human skeletal muscle fiber type classifications, Phys. Ther., 2001, vol. 81, no. 11, pp. 1810–1816. PMID: 11694174

Suwa, M., Nakamura, T., Katsuta, S., Heredity of muscle fiber composition and correlated response of the synergistic muscle in rats, Am. J. Physiol., 1996, vol. 271, no. 2, pp. R432–R436. https://doi.org/10.1152/ajpregu.1996.271.2.R432

Sybil, M.G., Pervachuk, R.V., and Trach, V.M., Personalization of freestyle wrestlers’ training process by influence the anaerobic systems of energy supply, J. Phys. Educ. Sport., 2015, vol. 15, no. 2, pp. 225–228. https://doi.org/10.7752/jpes.2015.02035

Tang, A.H. and Rando, T.A., Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation, EMBO J., 2014, vol. 33, no. 23, pp. 2782–2797. https://doi.org/10.15252/embj.201488278

Theret, M., Gsaier, L., Schaffer, B., Juban, G., Ben Larbi, S., Weiss-Gayet, M., Bultot, L., Collodet, C., Foretz, M., Desplanches, D., Sanz, P., Zang, Z., Yang, L., Vial, G., Viollet, B., Sakamoto, K., Brunet, A., Chazaud, B., and Mounier, R., AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis, EMBO J., 2017, vol. 36, no. 13, pp. 1946–1962. https://doi.org/10.15252/embj.201695273

Vierck, J., O’Reilly, B., Hossner, K., Antonio, J., Byrne, K., Bucci, L., and Dodson, M., Satellite cell regulation following myotrauma caused by resistance exercise, Cell Biol. Int., 2000, vol. 24, no. 5, 263–272. https://doi.org/10.1006/cbir.2000.0499

Wilkinson, D.J., Piasecki, M., and Atherton, P.J., The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans, Ageing Res. Rev., 2018, vol. 47, pp. 123–132. https://doi.org/10.1016/j.arr.2018.07.005

Willkomm, L., Schubert, S., Jung, R., Elsen, M., Borde, J., Gehlert, S., Suhr, F., and Bloch, W., Lactate regulates myogenesis in C2C12 myoblasts in vitro, Stem Cell Res., 2014, vol. 12, no. 3, pp. 742–753. https://doi.org/10.1016/j.scr.2014.03.004

Wright, E.M. and Woodson, J.F., Clinical assessment of pain in laboratory animals, in Rollin, B.E., Kesel, M.L., Eds., The Experimental Animal in Biologic Research, Boca Raton: CRC Press, 1990, pp. 205–216.

Yamakawa, H., Kusumoto, D., Hashimoto, H., and Yuasa, S., Stem cell aging in skeletal muscle regeneration and disease, Int. J. Mol. Sci., 2020, vol. 21, no. 5, art. ID 1830. https://doi.org/10.3390/ijms21051830

Zammit, P.S., Relaix, F., Nagata, Y., Ruiz, A.P., Collins, C.A., Partridge, T.A., Beauchamp, J.R., Pax7 and myogenic progression in skeletal muscle satellite cells, J. Cell Sci., 2006, vol. 119, pp. 1824–1832. https://doi.org/10.1242/jcs.02908