Цитологія і генетика 2019, том 53, № 6, 3-14
Cytology and Genetics 2019, том 53, № 6, 441–450, doi: https://www.doi.org/10.3103/S0095452719060033

Изучение роли протеинкиназ СК1 в организации кортикальных микротрубочек клеток корня Arabidopsis thaliana

Карпов П.А., Шеремет Я.А., Блюм Я.Б., Емец А.И.

Институт пищевой биотехнологии и геномики НАН Украины, ул. Осиповского, 2, а, Киев-123, 04123, Украина

Представители подсемейства Казеин киназа 1 (CK1) отличаются межвидовым консерватизмом и обширным набором субстратов фосфорилирования. Недавно появились доказательства того, что СК1 способны непосредственно фосфорилировать тубулин. Таким образом, СК 1 вносят вклад в тубулиновый код и функциональную специализацию микротрубочек. В данной работе мы представляем результаты исследования ответной реакции тубулинового цитоскелета растений на обработку СК1-специфичным ингибитором D4476. Было показано, что D4476 оказывает сильный дозозависимый эффект на рост и морфологию корней Arabidopsis thaliana. Эксперименты на растениях экспресирующих химерный ген gfp-map4, доказали взаимосвязь наблюдаемых морфологических реакций с пространственной реорганизацией микротрубочек вызванной избирательным ингибированием протеинкиназ CK1.

РЕЗЮМЕ. Представники підродини Казеїн кіназа 1 (СК1) відрізняються міжвидовим консерватизмом і значною кількістю субстратів фосфорилювання. Нещодавно з'явились докази того, що протеїнкінази СК1 здатні безпосередньо фосфорилювати тубулін. Таким чином, СК1 можуть вносити певний вклад в тубуліновий код і функціональну спеціалізацію мікротрубочек. В актуальної роботі ми представляємо результати дослідження відповіді тубулінового цитоскелету рослин на дію СК1-специфічного інгібітору D4476. Було встановлено, що D4476 має потужний дозозалежний ефект на ріст і морфологію коріння Arabidopsis thaliana. Експерименти на рослинах, що експресують асоційований з мікротрубочками флуоресцентний GFP-маркер (GFP-Map4), довели існування зв'язку виявлених морфологічних реакцій з просторовою реорганізацією мікротрубочок, що була викликана фактором селективного інгібування протеїнкіназ CK1.

Ключові слова: казеин киназа 1, микротрубочки, фосфорилирование, ингибитор, D4476, Arabidopsis
Казеїн кіназа 1, мікротрубочки, фосфорилювання, інгібітор, D4476, Arabidopsis

Цитологія і генетика
2019, том 53, № 6, 3-14

Current Issue
Cytology and Genetics
2019, том 53, № 6, 441–450,
doi: 10.3103/S0095452719060033

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Gross, S.D. and Anderson, R.A., Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family, Cell Signal., 1998, vol. 10, pp. 699–711.

2. Schittek, B. and Sinnberg, T., Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis, Mol. Cancer, 2014, vol. 13, no. 231. https://doi.org/10.1186/1476-4598-13-231

3. Robinson, L.C., Menold, M.M., Garrett, S., and Culbertson, M.R., Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis, Mol. Cell Biol., 1993, vol. 13, pp. 2870–2881.

4. Kloss, B., Price, J.L., Saez, L., Blau, J., Rothenfluh, A., Wesley, C.S., and Young, M.W., The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Ie, Cell, 1998, vol. 94, pp. 97–107.

5. Peters, J.M., McKay, R.M., McKay, J.P., and Graff, J.M., Casein kinase I transduces Wnt signals, Nature, 1999, vol. 401, pp. 345–350.

6. Dhillon, N. and Hoekstra, M.F., Characterization of two protein kinases from Schizosaccharomyces pombe involved in the regulation of DNA repair, EMBO J., 1994, vol. 13, pp. 2777–2788.

7. Panek, H.R., Stepp, J.D., Engle, H.M., Marks, K.M., Tan, P.K., Lemmon, S.K., and Robinson, L.C., Suppressors of YCK-encoded yeast casein kinase 1 deficiency define the four subunits of a novel clathrin AP-like complex, EMBO J., 1997, vol. 16, pp. 4194–4204.

8. Murakami, A., Kimura, K., and Nakano, A., The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum, J. Biol. Chem., 1999, vol. 274, pp. 3804–3810.

9. Ikeda, K., Zhapparova, O., Brodsky, I., Semenova, I., Tirnauer, J.S., Zaliapin, I., and Rodionov, V., CK1 activates minus-end–directed transport of membrane organelles along microtubules, Mol. Biol. Cell, 2011, vol. 22, pp. 1321–1329.

10. Schwab, C., DeMaggio, A.J., Ghoshal, N., Binder, L.I., Kuret, J., and McGeer, P.L., Casein kinase 1 delta is associated with pathological accumulation of tau in several neurodegenerative diseases, Neurobiol. Aging, 2000, vol. 21, pp. 503–510.

11. Flaherty, D.B., Soria, J.P., Tomasiewicz, H.G., and Wood, J.G., Phosphorylation of human tau protein by microtubule-associated kinases: GSK3b and cdk5 are key participants, J. Neurosci. Res., 2000, vol. 62, pp. 463–472.

12. Li, G., Yin, H., and Kuret, J., Casein kinase 1σ phosphorylates tau and disrupts its binding to microtubules, J. Biol. Chem., 2004, vol. 279, pp. 15938–15945.

13. Kannanayakal, T.J., Mendell, J.R., and Kuret, J., Casein kinase 1 alpha associates with the tau-bearing lesions of inclusion body myositis, Neurosci. Lett., 2008, vol. 431, pp. 141–145.

14. Perez, D.I., Gil, C., and Martinez, A., Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases, Med. Res. Rev., 2011, vol. 31, vol. 924–954.

15. Wittau, M., Wolff, S., Xiao, Z., Henne-Bruns, D., and Knippschild, U., Die stressinduzierte Casein Kinase 1 delta kann die Spindeldynamik durch direkte Interaktion mit dem Mikrotubuli assoziierten Protein MAP1A beeinflussen, in Chirurgisches Forum 2005. Deutsche Gesellschaft fur Chirurgie, Rothmund, M., Jauch, K.W., and Bauer, H., Eds., Berlin: Springer, 2005, vol. 34, ch. 13, pp. 37–39. https://doi.org/10.1007/3-540-26560-0_13

16. Zyss, D., Ebrahimi, H., and Gergely, F., Casein kinase I delta controls centrosome positioning during T cell activation, J. Cell Biol., 2011, vol. 195, pp. 781–797.

17. Wolff, S., Xiao, Z., Wittau, M., Sussner, N., Stoter, M., and Knippschild, U., Interaction of casein kinase 1 delta (CK1 delta) with the light chain LC2 of microtubule associated protein 1A (MAP1A), Biochem. Biophys. Acta, 2005, no. 1745, pp. 196–206.

18. Kuret, J., Johnson, G.S., Cha, D., Christenson, E.R., DeMaggio, A.J., and Hoekstra, M.F., Casein kinase 1 is tightly associated with paired-helical filaments isolated from Alzheimer’s disease brain, J. Neurochem., 1997, vol. 69, pp. 2506–2515.

19. Singh, T.J., Grundke-Iqbal, I., and Iqbal, K., Phosphorylation of tau protein by casein kinase-1 converts it to an abnormal Alzheimer-like state, J. Neurochem., 1995, vol. 64, pp. 1420–1423.

20. Behrend, L., Stöter, M., Kurth, M., Rutter, G., Heukeshoven, J., Deppert, W., and Knippschild, U., Interaction of casein kinase 1 delta (CK1d) with post-Golgi structures, microtubules and the spindle apparatus, Eur. J. Cell Biol., 2000, vol. 79, pp. 240–251.

21. Behrend, L., Milne, D.M., Stöter, M., Deppert, W., Campbell, L.E., Meek, D.W., and Knippschild, U., IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects, Oncogene, 2000, vol. 19, pp. 5303–5313.

22. Löhler, J., Hirner, H., Schmidt, B., Kramer, K., Fischer, D., Thal, D.R., Leithauser, F., and Knippschild, U., Immunohistochemical characterization of cell-type specific expression of CK1δ in various tissues of young adult BALB/c mice, PLoS One, 2009, vol. 4, no. 1, e4174.

23. Aletta, J.M., Phosphorylation of type III beta-tubulin PC12 cell neurites during NGF-induced process outgrowth, J. Neurobiol., 1996, vol. 31, pp. 461–475.

24. MacRae, T.H., Tubulin post-translational modifications enzymes and their mechanisms of action, Eur. J. Biochem., 1997, vol. 244, pp. 265–278.

25. Knippschild, U., Gocht, A., Wolff, S., Huber, N., Löhler, J., and Stöter, M., The casein kinase 1 family: participation in multiple cellular processes in eukaryotes, Cell Signal., 2005, vol. 17, no. 6, pp. 675–689.

26. Albornoz, A., Yánez, J.M., Foerster, C., Aguirre, C., Pereiro, L., Burzio, V., Moraga, M., Reyes, A.E., and Antonelli, M., The CK1 gene family: expression patterning in zebrafish development, Biol. Res., 2007, vol. 40, pp. 251–266.

27. Lee, J.-Y., Versatile casein kinase, Plant Signal. Behav., 2009, vol. 4, pp. 652–654.

28. Graves, P.R., Haas, D.W., Hagerdon, C.H., De Paoli-Roach, A.A., and Roach, P.J., Molecular cloning, expression and characterization of a 49 kDa casein kinase I isoform from rat testis, J. Biol. Chem., 1993, vol. 268, pp. 6394–6401.

29. Graves, P.R. and Roach, P.J., Role of COOH-terminal phosphorylation in the regulation of casein kinase Id, J. Biol. Chem., 1995, vol. 270, pp. 21689–21694.

30. Cegielska, A., Gietzen, K.F., Rivers, A., and Virshup, D.M., Autoinhibition of casein kinase I epsilon (CKI epsilon) is relieved by protein phosphatases and limited proteolysis, J. Biol. Chem., 1998, vol. 273, pp. 1357–1364.

31. Park, H.H., Casein kinase I-like protein linked to lipase in plant, Plant Signal. Behav., 2012, vol. 7, no. 7, pp. 719–721.

32. Karpov, P.A., Nadezhdina, E.S., Yemets, A.I., and Blume, Ya.B., Results of the clusterization of human microtubule and cell-cycle related serine/threonine protein kinases and their plant homologues, Moscow Univ. Biol. Sci. Bull., 2010, vol. 65, no. 4, pp. 213–216.

33. Wang, M., Yu, D., Guo, X., Cui, Y., Li, X., Zhang, J., Zhao, L., Chang, H., Hu, S., Zhang, C., Shi, J., and Liu, X., Casein kinase 1-like 3 is required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis,Afr. J. Biotech., 2011, vol. 10, no. 61, pp. 13219–13229.

34. Liu, W., Xu, Z.H., Luo, D., and Xue, H.W., Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity, Plant J., 2003, vol. 36, pp. 189–202.

35. Dai, C. and Xue, H.-W., Rice EARLY FLOWERING1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signaling, EMBO J., 2010, vol. 29, pp. 1916–1927.

36. Lee, J.Y., Taoka, K., Yoo, B.C., Ben-Nissan, G., Kim, D.J., and Lucas, W.J., Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins, Plant Cell, 2005, vol. 17, pp. 2817–2831.

37. Ben-Nissan, G., Yang, Y., and Lee, J.Y., Partitioning of casein kinase 1-like 6 to late endosome-like vesicles, Protoplasma. 2010, vol. 240, pp. 45–56.

38. Ben-Nissan, G., Cui, W., Kim, D.J., Yang, Y., Yoo, B.C., and Lee, J.Y., Arabidopsis casein kinase 1-Like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules, Plant Physiol., 2008, vol. 148, pp. 1897–1907.

39. Li, H., Zeng, X., Liu, Z.Q., Meng, Q.T., Yuan, M., and Mao, T.L., Arabidopsis microtubule-associated protein AtMAP65-2 acts as a microtubule stabilizer, Plant Mol. Biol., 2009, vol. 69, no. 3, pp. 313–324.

40. Cozza, G., Gianoncelli, A., Montopoli, M., Caparrotta, L., Venerando, A., Meggio, F., Pinna, L.A., Zagotto, G., and Moro, S., Identification of novel protein kinase CK1 delta (CK1delta) inhibitors through structure-based virtual screening, Bioorg. Med. Chem. Lett., 2008, vol. 18, pp. 5672–5675.

41. Rena, G., Bain, J., Elliot, M., and Cohen, P., D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a, EMBO Rep., 2004, vol. 5, pp. 60–65.

42. Aud, D.E. and Peng, S.L.-Y., Methods of treating inflammatory diseases, US Patent no. 2008/0146617 A1, 2008.

43. Zelenak, C., Eberhard, M., Jilani, K., Qadri, S.M., Macek, B., and Lang, F., Protein kinase CK1α regulates erythrocyte survival, Cell Physiol. Biochem., 2012, vol. 29, pp. 171–180.

44. Karpov, P.A., Nadezhdina, E.S., Yemets, A.I., Matusov, V.G., Nyporko, A.Y., Shashina, N.Y., and Blume, Y.B., Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases, BMC Genomics, 2010b vol. 11, pp. S1–S14. https://doi.org/10.1186/1471-2164-11-S1-S14

45. Mathur, M. and Chua, N.-H., Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes, Plant Cell, 2000, vol. 12, pp. 465–477.

46. Yemets, A., Sheremet, Y., Vissenberg, K., Van Orden, J., Verbelen, J.-P., and Blume, Y.B., Effects of tyrosine kinase and phosphatase inhibitors on microtubules in Arabidopsis root cells, Cell Biol. Int., 2008, vol. 32, pp. 630–637.

47. Collins, T.J., ImageJ for microscopy, Biotechniques, 2007, vol. 43, suppl. 1, pp. 25–30.

48. Barrada, A., Montane, M.H., Robaglia, C., and Menand, B., Spatial regulation of root growth: placing the plant TOR pathway in a developmental perspective, Int. J. Mol. Sci., 2015, vol. 16, no. 8, pp. 19671–19697.

49. Knippschild, U., Krüger, M., Richter, J., Xu, P., García-Reyes, B., Peifer, C., Halekotte, J., Bakulev, V., and Bischof, J., The CK1 family: contribution to cellular stress response and its role in carcinogenesis, Front. Oncol., 2014, vol. 4, no. 96. https://doi.org/10.3389/fonc.2014.00096

50. Krüger, M., Kalbacher, H., Kastritis, P.L., Bischof, J., Barth, H., Henne-Bruns, D., Vorgias, C., Sarno, S., Pinna, L.A., and Knippschild, U., New potential peptide therapeutics perturbing CK1δ/α-tubulin interaction, Cancer Lett., 2016, vol. 375, no. 2, pp. 375–383.

51. Carrino, M., Quotti, TubiL., Fregnani, A., Canovas, NunesS., Barila, G., Trentin, L., Zambello, R., Semenzato, G., Manni, S., and Piazza, F., Prosurvival autophagy is regulated by protein kinase CK1 alpha in multiple myeloma, Cell Death Discov., 2019, vol. 5, no. 98. https://doi.org/10.1038/s41420-019-0179-1

52. Manni, S., Carrino, M., Manzoni, M., Gianesin, K., Nunes, S.C., Costacurta, M., Tubi, L.Q., Macaccaro, P., Taiana, E., Cabrelle, A., Barila, G., Martines, A., Zambello, R., Bonaldi, L., Trentin, L., Neri, A., Semenzato, G., and Piazza, F., Inactivation of CK1α in multiple myeloma empowers drug cytotoxicity by affecting AKT and β-catenin survival signaling pathways, Oncotarget, 2017, vol. 8, no. 9, pp. 14604–14619.

53. Rachidi, N., Taly, J.F., Durieu, E., Leclercq, O., Aulner, N., Prina, E., Pescher, P., Notredame, C., Meijer, L., and Spath, G.F., Pharmacological assessment defines Leishmania donovani casein kinase 1 as a drug target and reveals important functions in parasite viability and intracellular infection, Antimicrob. Agents Chemother., 2014, vol. 58, no. 3, pp. 1501–1515.

54. Berger, F., Hung, C.-Y., Dolan, L., and Schiefelbein, J., Control of cell division in the root epidermis of Arabidopsis thaliana,Dev. Biol., 1998, vol. 194, no. 2, pp. 235–245.

55. Yemets, A., Krasylenko, Y., Sheremet, Y., and Blume, Y., Nitric oxide donor and scavenger influence on Arabidopsis thaliana root development via cortical microtubules reorganization, Acta Biol. Cracov., Ser. Bot., 2009, vol. 51, suppl. 2, p. 122.

56. Järes, M., Miller, P.G., Chu, L.P., Puram, R.V., Fink, E.C., Schneider, R.K., Al-Shahrour, F., Pena, P., Brey-fogle, L.J., Hartwell, K.A., McConkey, M.E., Cowley, G.S., Root, D.E., Kharas, M.G., Mullally, A., and Ebert, B.L., Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia, J. Exp. Med., 2014, vol. 211, no. 4, pp. 605–612.

57. Cheong, J.K., Zhang, F., Chua, P.J., Bay, B.H., Thorburn, A., and Virshup, D.M., Casein kinase 1α-dependent feedback loop controls autophagy in RAS-driven cancers, J. Clin. Invest., 2015, vol. 125, no. 4, pp. 1401–1418.

58. Lucas, J. and Shaw, S.L., Cortical microtubule arrays in the Arabidopsis seedling, Curr. Opin. Plant Biol., 2008, vol. 11, pp. 94–98.

59. Barlow, P.W. and Baluska, F., Cytoskeletal perspectives on root growth and morphogenesis, Annu Rev. Plant Physiol. Plant Mol. Biol, 2000, vol. 51, pp. 289–322.

60. Takahashi, H., Hirota, K., Kawahara, A., Hayakawa, E., and Inoue, Y., Randomization of cortical microtubules in root epidermal cells induces root hair initiation in lettuce (Lactuca sativa L.) seedlings, Plant Cell Physiol., 2003, vol. 44, pp. 350–359.

61. Van Bruaene, N., Joss, G., and van Oostveldt, P., Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development, Plant Physiol., vol. 136, pp. 3905–3919.

62. Vassileva, V.N., Kouchi, H., and Ridge, R.W., Microtubule dynamics in living root hairs: transient slowing by lipochitin oligosaccharide nodulation signals, Plant Cell, 2005, vol. 17, pp. 1777–1787.

63. Bao, Y., Kost, B., and Chua, N.H., Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism, Plant J., 2001, vol. 28, pp. 145–157.

64. Bibikova, T.N., Blancaflor, E.B., and Gilroy, S., Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana,Plant J., 1999, vol. 17, pp. 657–665.

65. Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W., GenBank, Nucleic Acids Res., 2013, vol. 41 (Database issue), pp. D36–D42.

66. The UniProt Consortium. UniProt: the universal protein knowledgebase, Nucleic Acids Res., 2017, vol. 45 (D1), pp. D158–D169.