Цитологія і генетика 2021, том 55, № 1, 3-12
Cytology and Genetics 2021, том 55, № 1, 1–9, doi: https://www.doi.org/10.3103/S0095452721010035

Внутрішньовидова диференціація омели білої (Viscum album L.) за допомогою оцінки поліморфізму довжини інтронів β-тубуліну та SSR-аналізу

Білоножко Ю.О., Рабоконь А.М., Постовойтова А.С., Калафат Л.О., Приваліхін С.М., Демкович А.Є., Блюм Я.Б., Пірко Я.В.

  • ДУ «Інститут харчової біотехнології та геноміки НАН України», Україна, 04123, Київ, вул. Осиповського, 2а

На підставі аналізу поліморфізму довжини першого інтрону генів β-тубуліну (ТВР-аналіз) показано різницю між двома підвидами омели білої (Viscum album spp. austriacum (Wiesb.) та V. album ssp. album L.). Також продемонстрована можливість використання ТВР-аналізу для визначення статі рослин омели. За допомогою проведеного SSR-аналізу вдалось виділити окремі генотипи омели білої. При оцінці ефективності використання двох типів ДНК-маркерів показано, що ТВР-аналіз доцільно використовувати для диференціювання різних підвидів омели білої, а SSR-аналіз – для дослідження генотипової мінливості в межах окремого підвиду.

Ключові слова: омела біла, підвиди, ДНК-маркери, ТВР-аналіз, SSR-маркери

Цитологія і генетика
2021, том 55, № 1, 3-12

Current Issue
Cytology and Genetics
2021, том 55, № 1, 1–9,
doi: 10.3103/S0095452721010035

Повний текст та додаткові матеріали

Цитована література

1. Ahmed, Z. and Dutt, H.C., Restriction of Viscum album to few phorophytes in a habitat with diverse type of tree species, Austin. J. Plant. Biol., 2015, vol. 1, no. 2, pp. 101–105.

2. Barbu, C.O., Impact of white mistletoe (Viscum album ssp. abietis) infection on needles and crown morphology of silver fir (Abies alba Mill.), Not. Bot. Hort. Agrobot., 2012, vol. 40, no. 2, pp. 152–158. https://doi.org/10.15835/nbha4027 906

3. Bardini, M., Lee, D., Donini, P., et al., Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species, Genome, 2004, vol. 47, pp. 281–291. https://doi.org/10.1139/g03-132

4. Barney, C.W., Hawksworth, F.G., Geils, B.W., et al., Host of Viscum album, Eur. J. Forest. Pathol., 1998, vol. 28, pp. 187–208. https://doi.org/10.1111/j.1439-0329.1998.tb01249.x

5. Bilgili, E., Kadir Coskuner, A., and Baysal, I., The distribution of pine mistletoe (Viscum album ssp. austriacum) in Scots pine (Pinus sylvestris) forests: from stand to tree level, Scand. J. Forest Res., 2020, vol. 35, nos. 1–2, pp. 20–28. https://doi.org/10.1080/02827581.2020.1729402

6. Bilonozhko, Y.u.O., Ponomarenko, L.O., Rabokon, A.M., et al., Distribution of mistletoe (Viscum album L.), which parasitizes different woody plants species, in Kyiv and its genetic characteristics, Factors Experim. Evol. Organisms, 2019, vol. 25, pp. 106–110. https://doi.org/10.7124/FEEO.v25.1148

7. Bohling, N., Greuter, W., Raus, T., et al., Notes on the Cretan mistletoe, Viscum album subsp. creticum subsp. nova (Loranthaceae/Viscaceae), Israel. J. Plant Sci., 2002, vol 50, pp. 77–84. https://doi.org/10.1560/RRJ4-HU15-8BFM-WAUK

8. Braglia, L., Gavazzi, F., Giovannini, A., et al., TBP-assisted species and hybrid identification in the genus Passiflora, Mol. Breed., 2014, vol. 33, no. 1, pp. 209–219. https://doi.org/10.1007/s11032-013-9945-6

9. Breviario, D., Baird, W.V., Sangoi, S., et al., High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns, Mol. Breed., 2007, vol. 20, no. 3, pp. 249–59. https://doi.org/10.1007/s11032-007-9087-9

10. Galasso, I., Manca, A., Braglia, L., et al., h-TBP: an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz., Mol. Breed., vol. 28, pp. 635–645.https://doi.org/10.1007/s11032-010-9515-0

11. Galkin, S.I., Dragan, N.V., Doyko, N.M., et al., Mistletoe in the relations system of “host–parasite,” Plant Introd., 2017, vol. 3, pp. 71–78. doi 10.5281/zenodo.2325002

12. Green, M.R. and Sambrook, J., Molecular Cloning: A Laboratory Manual, 4th ed., New York: Cold Spring Harbor Laboratory Press, 2012.

13. Hillis, D.M. and Bull, J.J., An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis, Syst. Biol., 1993, vol. 42, pp. 182–192.

14. Kalia, R.K., Rai, M.K., Kalia, S., et al., Microsatellite markers: an overview of the recent progress in plants, Euphytica, 2011, vol. 177, no. 3, pp. 309–334. https://doi.org/10.1007/s10681-010-0286-9

15. Kartoolinejad, D., Hosseini, S.M., Mirnia, S.K., et al., The relationship among infection intensity of Viscum album with some ecological parameters of host trees, Int. J. Environ. Res., 2007, vol. 1, no. 2, pp. 143–149.

16. Kim, B.Y., Park, H.S., Kim, S., et al., Development of microsatellite markers for Viscum coloratum (Santalaceae) and their application to wild populations, Appl. Plant Sci., 2017, vol. 5, no. 1. https://doi.org/10.3732/apps.1600102

17. Kim, Ch.S., Kim, S.Y., Sun, B.Y., et al., A review of the taxonomic and ecological characteristics of Korean mistletoe types (Viscum, Korthalsella, Loranthus and Taxillus), Korean J. Pl. Taxon, 2013, vol. 43, no. 2, pp. 81–89.https://doi.org/10.11110/kjpt.2013.43.2.81

18. Kolodziejek, J., Patykowski, J., and Kolodziejek, R., Distribution, frequency and host patterns of European mistletoe (Viscum album subsp. album) in the major city of Lodz, Biologia, 2013, vol. 68, no. 1, pp. 55–64. https://doi.org/10.2478/s11756-012-0128-4

19. Krasylenko, Y., Sosnovsky, Y., Atamas, N., et al., The European mistletoe (Viscum album L.): distribution, host range, biotic interactions, and management worldwide with special emphasis on Ukraine, Botany, 2020, vol. 98, no. 9. https://doi.org/10.1139/cjb-2020-0037

20. Mejnartowicz, L., Relationship and genetic diversity of mistletoe (Viscum album L.) subspecies, Acta Soc. Bot. Polon., 2006, vol. 75, no. 1, pp. 39–49. https://doi.org/10.5586/asbp.2006.007

21. Milewicz, M. and Sawicki, J., Sex-linked markers in dioecious plants, Plant Omics, 2013, vol. 6, no. 2, pp. 144–149.

22. Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 5269–5273.

23. Pannell, J.R., Plant sex determination, Curr. Biol., 2017, vol. 27, no. 5, pp. 191–197. https://doi.org/10.1016/j.cub.2017.01.052

24. Pavlicek, A., Hrda, S., and Flegr, J., FreeTree—freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia, Folia Biol., 1999, vol. 45, pp. 97–99.

25. Rabokon, A.N., Pirko, Ya., Demkovych, A., et al., Intron length polymorphism of beta-tubulin genes as an effective instrument for plant genotyping, Mol. Appl. Genet. (Minsk), 2015, vol. 19, pp. 35–44. https://doi.org/10.7124/FEEO.v22.945

26. Rabokon, A.N., Pirko, Y.a.V., Demkovych, A.Ye., et al., Comparative analysis of the efficiency of intron-length polymorphism of β-tubulin genes and microsatellite loci for flax varieties genotyping, Cytol. Genet., 2018, vol. 52, no. 1, pp. 3–15. https://doi.org/10.3103/S0095452718010115

27. Rabokon, A., Demkovich, A., Sozinov, A., et al., Intron length polymorphism of β-tubulin genes of Aegilops biuncialis Vis., Cell Biol. Int., 2019, vol. 43, no. 9, pp. 1031–1039. https://doi.org/10.1002/cbin.10886

28. Raftoyannis, Y., Radoglou, K., and Bredemeier, M., Effects of mistletoe infestation on the decline and mortality of Abies cephalonica in Greece, Ann. For. Res., 2015, vol. 58, no. 1, pp. 55–65. https://doi.org/10.15287/afr.2015.347

29. Sanguesa-Barreda, G., Linares, J.C., and Camarero, J.J., Drought and mistletoe reduce growth and water-use efficiency of Scots pine, Forest Ecol. Manage., 2013, vol. 296, pp. 64–73. https://doi.org/10.1016/j.foreco.2013.01.028

30. Schaller, G., Urech, K., Grazi, G., et al., Viscotoxin composition of the three European subspecies of Viscum album, Planta Med., 1998, vol. 64, pp. 677–678.

31. Schink, M. and Mechelke, F., Sex-correlated differences in the protein pattern of Viscum album L. revealed by two-dimensional gel electrophoresis, Na-urwissenschaften, 1989, vol. 76, pp. 29–30.

32. Tsopelas, P., Angelopoulos, A., Economou, A., et al., Mistletoe (Viscum album) in the fir forest of Mount Parnis, Greece, Forest Ecol. Manage., 2004, vol. 202, pp. 59–65. https://doi.org/10.1016/j.foreco.2004.06.032

33. Vieira, M.L., Santini, L., Diniz, A.L., et al., Micro-satellite markers: what they mean and why they are so useful, Genet. Mol. Biol., 2016, vol. 9, no. 3, pp. 312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027

34. Wei, X., Guo, H., Che, P., et al., The complete chloroplast genome sequence of Viscum coloratum (Viscaceae), a semiparasitic medicinal plant, Mitochondr. DNA, 2019, vol. 4, no. 2, pp. 2904–2905. https://doi.org/10.1080/23802359. 2019.1660923

35. Zhou, W., Wang, Y., Zhang, G., et al., Molecular sex identification in dioecious Hippophae rhamnoides L. via RAPD and SCAR markers, Molecules, 2018, vol. 23, no. 5, p. 1048. https://doi.org/10.3390/molecules23051048

36. Zuber, D., Biological flora of Central Europe: Viscum album L., Flora, 2004, vol. 199, pp. 181–203.

37. Zuber, D. and Widmer, A., Genetic evidence for host specificity in the hemi-parasitic Viscum album L. (Viscaceae), Mol. Ecol., 2000, vol. 9, pp. 1069–1073.

38. Zuber, D. and Widmer, A., Phylogeography and host race differentiation in the European mistletoe (Viscum album L.), Mol. Ecol., 2009, vol. 18, pp. 1946–1962. https://doi.org/10.1111/j.1365-294X.2009.04168.x