Цитологія і генетика 2021, том 55, № 6, 3-14
Cytology and Genetics 2021, том 55, № 6, 499–509, doi: https://www.doi.org/10.3103/S009545272106014

Пряма та непряма дія ліпосомальної форми miR-101 на клітини в експериментальній моделі хвороби Альцгеймера

Соколік В.В., Берченко О.Г., Коляда О.К., Шульга С.М.

  1. ДУ «Інститут неврології, психіатрії та наркології НАМН України», Харків, Україна, вул. Академіка Павлова, 46, 61068
  2. ДУ «Інститут геронтології ім. Д.Ф.Чеботарьова НАМН України», Київ, Україна, вул. Вишгородська, 67, 04114
  3. ДУ «Інститут харчової біотехнології і геноміки НАН України», Київ, Україна, вул. Осиповського, 2А, 04123

В даний час хвороби мозку є невирішеною проблемою XXI століття. Хвороба Альцгеймера була вперше виявлена 100 років тому і за цей час жоден пацієнт з таким діагнозом не вилікувався. Тому пошук нових стратегій лікування з використанням регуляторних агентів, таких, як специфічні мікроРНК, є актуальним. Метою роботи було визначити вплив ліпосомальної форми miR-101 на рівень β-амілоїдного пептиду 42 (Aβ42) та систему цитокінів за клітинної моделі хвороби Альцгеймера. Робота включала ПЛР, ІФА та флуоресцентні методи. За допомогою FAM було виявлено, що ліпосомальна форма miR-101 накопичується в мононуклеарних клітинах крові, попередньо оброблених агрегатами Aβ40, і функціонує впродовж 2–3 год, а не миттєво руйнується нуклеазами. Екзогенна miR-101 не впливає на транскрипцію гена AβPP, але зменшує утворення ендогенного Aβ42. Непрямий протизапальний ефект ліпосомальної форми miR-101 був встановлений після 12 годин інкубації з мононуклеарними клітинами: зниження внутрішньоклітинного рівня TNFα та IL-10. Однак miR-101 не впливала на експресію генів TNFα і IL-6 та затримувала пік активації експресії гену IL-10 на 9 годин. Таким чином, ліпосомальна форма miR-101 показала прямий антиамілоїдогенний ефект та непрямий протизапальний ефект за клітинної моделі хвороби Альцгеймера.

Ключові слова: miR-101, хвороба Альцгеймера, ліпосоми, β-амілоїдний пептид, цитокіни, мононуклеарні клітини крові

Цитологія і генетика
2021, том 55, № 6, 3-14

Current Issue
Cytology and Genetics
2021, том 55, № 6, 499–509,
doi: 10.3103/S009545272106014

Повний текст та додаткові матеріали

Цитована література

1. Agostini, M., Tucci, P., Killick, R., et al., Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets, Proc. Natl. Acad. Sci. U. S. A., 2011. https://doi.org/10.1073/pnas.1112061109

2. Amakiri, N., Kubosumi, A., Tran, J., et al., Amyloid beta and microRNAs in Alzheimer’s disease, Front. Neurosci., 2019. https://doi.org/10.3389/fnins.2019.00430

3. Arancibia, S., Silhol, M., Mouliere, F., et al., Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats, Neurobiol. Dis., 2008. https://doi.org/10.1016/j.nbd.2008.05.012

4. Barak, B., Shvarts-Serebro, I., Modai, S., et al., Opposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNAs in mouse models, Transl. Psychiatry, 2013. https://doi.org/10.1038/tp.2013.77

5. Bertram, L., McQueen, M.B., Mullin, K., et al., Systematic meta-analyses of Alzheimer disease genetic association studies: the alzgene database, Nat. Genet., 2007. https://doi.org/10.1038/ng1934

6. Boissonneault, V., Plante, I., Rivest, S., et al., MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1, J. Biol. Chem., 2009. https://doi.org/10.1074/jbc.M807530200

7. Brouwers, N., Sleegers, K., Engelborghs, S., et al., Genetic risk and transcriptional variability of amyloid precursor protein in Alzheimer’s disease, Brain, 2006. https://doi.org/10.1093/brain/awl212

8. Chakrabarty, A., Tranguch, S., Daikoku, T., et al., MicroRNA regulation of cyclooxygenase-2 during embryo implantation, Proc. Natl. Acad. Sci. U. S. A., 2007. https://doi.org/10.1073/pnas.0705917104

9. Czauderna, F., Fechtner, M., Dames, S., et al., Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells, Nucleic Acids Res., 2003. https://doi.org/10.1093/nar/gkg393

10. Delay, C., Mandemakers, W., and Hebert, S.S., MicroRNAs in Alzheimer’s disease, Neurobiol. Dis., 2012. https://doi.org/10.1016/j.nbd.2012.01.003

11. Fenske, D.B., Chonn, A., and Cullis, P.R., Liposomal nanomedicines: an emerging field, Toxicol. Pathol., 2008. https://doi.org/10.1177/0192623307310960

12. Fillit, H., Ding, W.H., Buee, L., et al., Elevated circulating tumor necrosis factor levels in Alzheimer’s disease, Neurosci. Lett., 1991. https://doi.org/10.1016/0304-3940(91)90490-K

13. Frozza, R.L., Lourenco, M.V., and De Felice, F.G., Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects, Front. Neurosci., 2018. https://doi.org/10.3389/fnins.2018.00037

14. Fu, Y., Chen, J., and Huang, Z., Recent progress in microRNA-based delivery systems for the treatment of human disease, ExRNA, 2019.https://doi.org/10.1186/s41544-019-0024-y

15. Griffin, W.S., Nicoll, J.A., Grimaldi, L.M., et al., The pervasiveness of interleukin-1 in Alzheimer pathogenesis: a role for specific polymorphisms in disease risk, Exp. Gerontol., 2000. https://doi.org/10.1016/S0531-5565(00)00110-8

16. Hebert, S.S., Horre, K., Nicolai’, L., et al., Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression, Proc. Natl. Acad. Sci. U. S. A., 2008. https://doi.org/10.1073/pnas.0710263105

17. Hebert, S.S., Horre, K., Nicolai, L., et al., MicroRNA regulation of Alzheimer’s amyloid precursor protein expression, Neurobiol. Dis., 2009. https://doi.org/10.1016/j.nbd.2008.11.009

18. Kou, X., Chen, D., and Chen, N., The regulation of microRNAs in Alzheimer’s disease, Front. Neurol., 2020. https://doi.org/10.3389/fneur.2020.00288

19. Lee, K., Kim, H., An, K., et al., Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD mouse model of Alzheimer’s disease, Sci. Rep., 2016. https://doi.org/10.1038/srep34433

20. Lin, Q., Chen, J., Zhang, Zh., et al., Lipid-based nanoparticles in the systemic delivery of siRNA, Nanomedicine, 2008. https://doi.org/10.2217/nnm.13.192

21. Long, J.M. and Lahiri, D.K., MicroRNA-101 down-regulates Alzheimer’s amyloid-beta precursor protein levels in human cell cultures and is differentially expressed, Biochem. Biophys. Res. Commun., 2011. https://doi.org/10.1016/j.bbrc.2010.12.053

22. Losurdo, M. and Grilli, M., Extracellular vesicles, influential players of intercellular communication within adult neurogenic niches, Int. J. Mol. Sci., 2020. https://doi.org/10.3390/ijms21228819

23. Lukiw, W.J., Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus, Neuroreport, 2007. https://doi.org/10.1097/WNR.0b013e3280148e8b

24. Lukiw, W.J. and Alexandrov, P.N., Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease (AD) brain, Mol. Neurobiol., 2012. https://doi.org/10.1007/s12035-012-8234-4

25. Ma, T., Sun, X., Sun, S., et al., The study of peripheral blood miR-29a/101 in the diagnosis of Alzheimer’s disease, Chin. J. Behav. Med. Brain Sci., 2016. https://doi.org/10.3760/cma.j.issn.1674-6554.2016.11.011

26. Patel, N., Hoang, D., Miller, N., et al., MicroRNAs can regulate human APP levels, Mol. Neurodegeneration, 2008. https://doi.org/10.1186/1750-1326-3-10

27. Pillai, R.S., MicroRNA function: multiple mechanisms for a tiny RNA?, RNA, 2005. https://doi.org/10.1261/rna.2248605

28. Rajagopalan, L.E. and Malter, J.S., Growth factor-mediated stabilization of amyloid precursor protein mRNA is mediated by a conserved 29-nucleotide sequence in the 3'-untranslated region, J. Neurochem., 2000. https://doi.org/10.1046/j.1471-4159.2000.0740052.x

29. Rajagopalan, L.E., Westmark, C.J., Jarzembowski, J.A., et al., HnRNP C increases amyloid precursor protein (APP) production by stabilizing APP mRNA, Nucleic Acids Res., 1998. https://doi.org/10.1093/nar/26.14.3418

30. Ramser, E.M., Gan, K.J., Decker, H., et al., Amyloid-P oligomers induce tau-independent disruption of BDNF axonal transport via calcineurin activation in cultured hippocampal neurons, Mol. Biol. Cell, 2013. https://doi.org/10.1091/mbc.e12-12-0858

31. Reddy, P.H., Tonk, S., Kumar, S., et al., A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease, Biochem. Biophys. Res. Commun., 2017, https://doi.org/10.1016/j.bbrc.2016.08.067

32. Redis, R.S., Calin, S., Yang, Y., et al., Cell-to-cell miRNA transfer: from body homeostasis to therapy, Pharmacol. Ther., 2012. https://doi.org/10.1016/j.pharmthera.2012.08.003

33. Rodriguez-Ortiz, C.J., Baglietto-Vargas, D., Martinez-Coria, H., et al., Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice, J. Alzheimers Dis., 2014. https://doi.org/10.3233/JAD-140204

34. Rogers, J.T., Leiter, L.M., McPhee, J., et al., Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences, J. Biol. Chem., 1999. https://doi.org/10.1074/jbc.274.10.6421

35. Rumble, B., Retallack, R., Hilbich, C., et al., Amyloid a4 protein and its precursor in Down’s syndrome and Alzheimer’s disease, N. Engl. J. Med., 1989. https://doi.org/10.1056/NEJM198906013202203

36. Schipper, H.M., Maes, O.C., Chertkow, H.M., et al., MicroRNA expression in Alzheimer blood mononuclear cells, Gene Regul. Syst. Biol., 2007. https://doi.org/10.4137/GRSB.S361

37. Sleegers, K., Brouwers, N., Gijselinck, I., et al., APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy, Brain, 2006. https://doi.org/10.1093/brain/awl203

38. Sokolik, V.V., Berchenko, O.G., Levicheva, N.O., et al., Anti-amyloidogenic effect of MiR-101 in experimental Alzheimer’s disease, Biotechnol. Acta, 2008. https://doi.org/10.15407/biotech12.03.041

39. Sokolik, V.V., Berchenko, O.G., and Shulga, S.M., Comparative analysis of nasal therapy of curcumin soluble and liposomal forms of rats with model of Alzheimer’s disease, J. Alzheimer’s Dis. Parkinsonism, 2017.https://doi.org/10.4172/2161-0460.1000357

40. Song, J. and Lee, J.E., MiR-155 is involved in Alzheimer’s disease by regulating T lymphocyte function, Front. Aging Neurosci., 2015. https://doi.org/10.3389/fnagi.2015.00061

41. Strauss, S., Bauer, J., Ganter, U., et al., Detection of interleukin-6 and alpha 2-macroglobulin immuno-reactivity in cortex and hippocampus of Alzheimer’s disease patients, Lab. Invest., 1992, vol. 66, pp. 223–230.

42. Strillacci, A., Griffoni, C., Sansone, P., et al., MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells, Exp. Cell. Res., 2009. https://doi.org/10.1016/j.yexcr.2008.12.010

43. Vilardo, E., Barbato, C., Ciotti, M., et al., MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons, J. Biol. Chem., 2010. https://doi.org/10.1074/jbc.M110.112664

44. Yingchoncharoen, Ph., Kalinowski, D.S., and Richardson, D.R., Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come, Pharmacol. Rev., 2016. https://doi.org/10.1124/pr.115.012070

45. Zhang, J., Hu, M., Teng, Z., et al., Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer’s disease, J. Neurosci., 2014. https://doi.org/10.1523/JNEUROSCI.1165-14.2014