ISSN 0564-3783  



Main page
Contacts
Themes
Archive  
Themes
Subscription
Information to authors
Editorial board
Mobile version


In Ukrainian

Export citations
UNIMARC
BibTeX
RIS





ASSESSMENT OF THE UTILITY OF TRAP AND EST­SSRs MARKERS FOR GENETIC DIVERSITY ANALYSIS OF SUGARCANE GENOTYPES

Farsangi F.J., Thorat A.S., Devarumath R.M.

 




The TRAP and EST-SSRs technique were utilized for assessing the genetic diversity of 55 sugarcane genotypes (28 wildtypes and 27 cultivars). The total number of polymorphic bands amplified by TRAP primers ranged from 7 to 11 with an average of 9 amplified by SuSy+Arb2, SAI+Arb1, PPDK+Arb3 and PPDK+Arb2. The polymorphism was found to be high (≥50 %), ranging from 78 to 100 % with an average of 87 % for all the markers. Polymorphic Information content (PIC) value ranged from 0.11(SuSy+Arb2) to 0.44 (SuSy+Arb3) primers with an average of 0.27. Also, the highest resolving power (Rp) was found 6.9 in (SAI+Arb1) between nine primers. A total 15 sets of EST-SSRs primers were used for PCR amplification, 179 amplified fragments is produced which 174 were polymorphic. The total numbers of polymorphic alleles amplified by the various EST-SSRs markers were ranged from 5 (ESSR07 and ESSR10) to 22 (ESSR09), with an average of 13.5 alleles. The polymorphism was found to be high (≥50 %), ranging from 83.33 to 100 % with an average of 97.2 % for all the markers Polymorphic Information content (PIC) value ranged from 0.29 (ESSR15) to 0.83 (ESSR04) primers with an average of 0.56.  Also, the highest resolving power (Rp) was found in 8.55 ESSR05 between 15 primers. For the TRAP nine combination primers was used for the work. A total 85 amplified fragments were produced which 74 (85 %) were polymorphic. In cooperation of both the markers, dendrogram was constructed using UPGMA method from the present study. Hence, the TRAP and EST-SSRs techniques jointly helped to identify the genetic diversity of sugarcane clones/varieties which could be used in breeding program for sugarcane improvement. 

Key words: Sugarcane, Genetic diversity, Molecular assisted selection, PIC, TRAP, EST-SSRs

Tsitologiya i Genetika 2018, vol. 52, no. 6, pp. 93-95

  • Department of Biotechnology, Savitribai Phule University, Pune, Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Pune 412307, India

E-mail: rdevarumath gmail.com

Farsangi F.J., Thorat A.S., Devarumath R.M. ASSESSMENT OF THE UTILITY OF TRAP AND EST­SSRs MARKERS FOR GENETIC DIVERSITY ANALYSIS OF SUGARCANE GENOTYPES, Tsitol Genet., 2018, vol. 52, no. 6, pp. 93-95.

In "Cytology and Genetics":
Forough Jomeh Farsangi, Avinash S. Thorat, Rachayya M. Devarumath Assessment of the Utility of TRAP and EST-SSRs Markers for Genetic Diversity Analysis of Sugarcane Genotypes, Cytol Genet., 2018, vol. 52, no. 6, pp. 467–477
DOI: 10.3103/S0095452718060026


References

1. Singh, R.K., Singh, R.B., Singh, S.P., and Sharma, M.L., Identification of sugarcane microsatellites associated to sugar content in sugarcane and transferability to other cereal genomes, Euphytica, 2011, vol. 182, pp. 335–354.

2. Roach, B.T., Nobilisation of sugarcane, Proc. Int. Soc. Sugar Cane Technot., 1972, vol. 14, pp. 206–216.

3. Daniels, J. and Roach, B.T., Taxonomy and evolution, in Sugarcane Improvement through Breeding, Heinz, D.J., Ed., Amsterdam: Elsevier Press, 1987, pp. 7–84.

4. Devarumath, R.M., Kalwade, S.B., Bundock, P., Eliott, F.G., and Henry, R., Target region amplification polymorphism (TRAP) and single nucleotide polymorphism (SNP) marker utility in genetic evaluation of sugarcane genotypes, Plant Breed., 2013, vol. 132, pp. 736–747.

5. Parida, S.K., Pandit, A., Gaikwad, K., Sharma, T.R., Srivastava, P.S., Singh, N.K., and Mohapatra, T., Functionally relevant microsatellites in sugarcane unigenes, BMC Plant Biol., 2010, vol. 10, p. 251. doi 10.1186/1471-2229-10-251

6. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., and Rafalski, A., The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis, Mol. Breed., 1996, vol. 2, pp. 225–238.

7. Selvi, A., Nair, N.V., Noyer, J.L., Singh, N.K., Balasundaram, N., Bansal, K.C., Koundal, K.R., and Mohapatra, T., Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP, Crop Sci., 2005, vol. 45, pp. 1750–1757.

8. Kawar, P.G., Devarumath, R.M., and Nerkar, Y., Use of RAPD markers for assessment of genetic diversity in sugarcane cultivars. Indian J. Biotechnol., 2009, vol. 8, pp. 67–71.

9. Oliveira, K.M., Pinto, L.R., Marconi, T.G., Margarido, G.R.A., Pastina, M.M., Teixeira, L.H.M., Figueira, A.M., Ulian, E.C., Garcia, A.A.F., and Souza, A.P., Functional genetic linkage map on EST markers for a sugarcane (Saccharum spp.) commercial cross, Mol. Breed., 2007, vol. 20, pp. 189–208.

10. Maccheroni, W., Jordao, H., De Gaspari, R., De Moura, G.L., and Matsuoka, S., Development of a dependable microsatellite-based fingerprinting system for sugarcane, Sugar Cane Int., 2009, vol. 27, pp. 47–52.

11. Kalwade, S.B. and Devarumath, R.M., Single strand conformation polymorphism of genomic and EST-SSRs marker and its utility in genetic evaluation of sugarcane, Physiol. Mol. Biol. Plants, 2014, vol. 20, pp. 313–321.

12. Devarumath, R.M., Kalwade, S.B., Kawar, P.G., and Sushir, K.V., Assessment of genetic diversity in sugarcane germplasm using ISSR and SSR markers, Sugar Tec., 2012, vol. 14, pp. 334–344.

13. Kalwade, S.B., Devarumath, R.M., Kawar, P.G., and Sushir, K.V., Genetic profiling of sugar-cane genotypes using inter simple sequence repeat (ISSR) markers, Electron. J. Plant Breed., 2012, vol. 3, pp. 621–628.

14. Singh, R.K., Singh, P., Mishra, P., and Singh, S.P., STMS markers for tagging high sugar gene in sugarcane, Sugar Tech., 2005, vol. 7, pp. 74–76.

15. Devarumath, R.M., Kalwade, S.B., Bundock, P., Elliott, F.G., and Henry, R., Independent target region amplification polymorphism and single-nucleotide polymorphism marker utility in genetic evaluation of sugarcane genotypes, Plant Breed., 2013, vol. 132, pp. 736–747. doi.org/10.1111/pbr.12092

16. Pan, Y.B., Burner, D.M., and Legendre, B.L., An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers, Genetica, 2000, vol. 108, pp. 285–295.

17. Parida, S.K., Kalia, S.K., and Kaul, S., Informative genomic microsatellite markers for efficient genotyping applications in sugarcane, Theor. Appl. Genet., 2009, vol. 118, pp. 327–338.

18. Singh, R.K., Singh, R.B., Singh, S.P., Mishra, N., Rastogi, J., Sharma, M.L., and Kumar, A., Genetic diversity among the Saccharum spontaneum clones and commercial hybrids through SSR markers., Sugar Tech., 2013, vol. 15, pp. 109–115.

19. Singh, R.B., Singh, B., and Singh, R.K., Development of microsatellite (SSRs) markers and evaluation of genetic variability within sugarcane commercial varieties (Saccharum spp. hybrids), Int. J. Advanced Res., vol. 3, pp. 700–708.

20. Pan, Y.B., Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers, Am. J. Plant Sci., 2010, vol. 1, pp. 87–94.

21. Singh, N.K., Genetic mapping and QTL analysis for sugar yield-related traits in sugarcane, Euphytica, 2013, vol. 191, pp. 333–353.

22. Powell, W., Morgante, M., McDevitt, R., Vend-ramin, G.G., and Rafalski, J.A., Polymorphic simple sequence repeat regions in chloroplast genomes: Application to population genetics of pines, Natl. Acad. Sci., 1995, vol. 92, pp. 7759–7763.

23. Hu, J. and Vick, B., Target region amplification, polymorphism: a novel marker technique for plant genotypes, Plant Mol. Biol. Rep., vol. 20, pp. 289–294.

24. Suman, A., Ali, K., Arro, J., Parco, A.S., Kimbeng, C.A., and Baisakh, N., Molecular diversity among members of the Saccharum complex assessed using TRAP markers based on lignin-related genes, Bio. Energy Res., 2012, vol. 5, pp. 197–120.

25. Khan, S.M., Yadava, S., Srivastava, S., Swapna, M., Chandra, A., and Singh, R.K., Development and utilization of conserved-intron scanning marker in sugarcane, Aust. J. Bot., 2011, vol. 59, pp. 38–45.

26. Andru, S., Pan, Y.B., Thongthawee, S., Burner, D.M., and Kimbeng, C.A., Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers, Theor. Appl. Genet., 2011, vol. 123, pp. 77–93. doi 10.1007/s00122-011-1568-x

27. Alwala, S., Suman, A., Arro, J.A., Veremis, J.C., and Kimbeng, C.A., Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections, Crop Sci. Soc. Am., 2006a, vol. 46, pp. 448–455.

28. Alwala, S., Kimbeng, C.A., Gravois, C.A., and Bischoff, K.P., TRAP, a new tool for sugarcane breeding: comparison with AFLP and coefficient of percentage. J. Am. Soc. Sugar Cane Technol., 2006b, vol. 26, pp. 62–87.

29. Da, SilvaJ.A. and Bressiani, J.A., Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny, Genet. Mol. Biol., 2005, vol. 28, pp. 294–298. doi.org/10.1590/S1415-47572005000200020

30. Aljanabi, S.M., Froget, L., and Dookun, A., An improved and rapid protocol for the isolation of polysaccharide and polyphenol free sugarcane DNA, Plant Mol. Biol. Rep., vol. 17, pp. 1–8.

31. Li, G. and Quiros, C., Sequence related amplification polymorphism a new marker system based on simple PCR reaction, its application to mapping and gene tagging in Brassica, Theor. Appl. Genet., 2001, vol. 103, pp. 455–461.

32. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York, USA: Cold Spring Harbor, 1989.

33. Rohlf, F.J., NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, New York: Exeter Software, 2000.

34. Mateescu, R.G., Zhang, Z., Tgai, K., Phavaphutanon, J., Wursten, N.I., Lust, G., Quaa, R., Murphy, K., Acland, G.M., and Todhunter, R.J., Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for Hip dysplasia in crossbreed pedigree, J. Heredity, 2005, vol. 96, pp. 847–853.

35. Prevost, A. and Wilkinson, M.J., A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars, Theor. Appl. Genet., 1999, vol. 98, pp. 107–112.

36. Filho, J.A.D., Resende, L.V., Bastos, G.Q., Neto, D.E.S., and Machado, P.R., Use of molecular markers RAPD, and ESTs SSR to study genetic variability in sugarcane, Rev. Cienc. Agron., 2013, vol. 44, pp. 141–149. doi.org/ 10.1590/S1806-66902013000100018

37. Creste, S., Sansoli, D.M., Tardiani, A.C.S., Silva, D.N., and Goncalves, F.K., Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane, Sugar Tech., 2010, vol. 12, pp. 150–154.

38. Diola, V., Barbosa, M.H.P., and Vegia, C.F.M., Molecular markers EST-SSRs for genotype-phenotype association in sugarcane, Sugar Tech., 2014, vol. 16, pp. 241–249.

39. Hameed, U., Pan, Y.B., Muhammad, K., Afghan, S., and Iqbal, J., Use of simple sequence repeat markers for DNA fingerprinting and diversity analysis of sugarcane (Saccharum spp.) cultivars resistant and susceptible to red rot, Genet. Mol. Res., 2012, vol. 11, pp. 1195–1204.

40. Haq, S.U., Kumar, P., Singh, R.K., Kumar, S.V., Bhatt, B., Sharma, M., Kachhwaha, S., and Kothari, S.L., Assessment of functional EST-SSR markers (sugarcane) in cross-species transferability, genetic diversity among Poaceae plants, and bulk segregation analysis, Genet. Res. Int., 2016, pp. 1–16. doi.org/ 10.1155/2016/7052323

41. Marconi, T.G., Costa, E.A., Miranda, H., Mancini, M.C., Cardoso-Silva, C.B., Oliveira, K.M., Pinto, L.R., Mollinari, M., Garcia, A., and Sousa, A.P., Functional markers for gene mapping and genetic diversity studies in sugarcane, BMC Res. Notes, 2011, vol. 4, p. 264.

42. Oliveira, K.M., Pinto, L.R., Marconi, T.G., Mollinar, M., Ulian, E.C., Chabregas, S.M., Falco, M.C., Burniquist, W., Garcia, A.A.F., and Souza, A.P., Characterization of new polymorphic functional markers for sugarcane, Genome, 2009, vol. 52, pp. 191–209.

43. Liu, P., Que, Y., and Pan, Y-B., Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing, Sugar Tech., 2011, vol. 13, pp. 129–136.

44. Yang, X., Wei, L., Ying-Ying, L., Wen-Bing, G., and Yin-Bing, B., Applying target region amplification polymorphism markers for analyzing genetic diversity of Lentinula edodes in China, J. Basic Microbiol., 2010, vol. 50, pp. 475–483.

45. Khan, I.A., Bibi, S., Yasmeen, S., Seema, N., Khatri, A., Siddiqui, M.A., Nizamani, G.S., and Afgan, S., Identification of elite sugarcane clones through TRAP, Pak. J. Bot., 2011, vol. 43, pp. 261–269.

46. Glazmann, J.C., Lu, Y.H., and Lanaud, C., Variation of nuclear ribosomal DNA in sugarcane, J. Genet. Breed, 1990, vol. 44, pp. 191–198.

47. Singh, R.K., Singh, R., Singh, S.P., Mohapatra, T., and Singh, S.B., Molecular diversity among Saccharum species and elite sugarcane varieties based on RAPD and AFLP marers, Proc. Internl. Symp. on Technologies to improve Sugar Productivity in Developing Countries, Guillin, P. R. China, 2006, pp. 646–654.

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 09.12.21