ISSN 0564-3783  



Main page
Contacts
Themes
Archive  
Themes
Subscription
Information to authors
Editorial board
Mobile version


In Ukrainian

Export citations
UNIMARC
BibTeX
RIS





A role of HSP90 chaperones in stability and plasticity of onthogenesis of plants under normal and stressful conditions (Arabidopsis thaliana)

Kozeko L.Y.

Review 


[Free Full Text (pdf)]Article Free Full Text (pdf)   [Free Internet Supplement]  

SUMMARY. The functions of HSP90 chaperones in the protein folding system, as well as regulation of specific substrates effecting multiple signal pathways and cellular processes were considered. The triple role of HSP90 in stress was described: binding damaged proteins and directing them for refolding or degradation; regulation of the heat shock gene induction; and alteration in the gene expression program. Based on the results of studies of the model species Arabidopsis thaliana, the function of HSP90 in maintenance of growth and morphogenesis stability, developmental plasticity and mechanisms of stress tolerance was shown. A model for the interaction of the HSP90 functions under normal and stressful conditions is presented.

Tsitologiya i Genetika 2019, vol. 53, no. 2, pp. 56-73

E-mail: liudmyla.kozeko gmail.com

Kozeko L.Y. A role of HSP90 chaperones in stability and plasticity of onthogenesis of plants under normal and stressful conditions (Arabidopsis thaliana), Tsitol Genet., 2019, vol. 53, no. 2, pp. 56-73.

In "Cytology and Genetics":
L. Y. Kozeko The Role of HSP90 Chaperones in Stability and Plasticity of Ontogenesis of Plants under Normal and Stressful Conditions (Arabidopsis thaliana), Cytol Genet., 2019, vol. 53, no. 2, pp. 143161
DOI: 10.3103/S0095452719020063


References

1. Picard, D., Heat-shock protein 90, a chaperone for folding and regulation, Cell. Mol. Life Sci., 2002, vol. 59, no. 10, pp. 16401648. https://doi.org/10.1007/PL00012491

2. Nollen, E.A.A. and Morimoto, R.I., Chaperoning signaling pathways: molecular chaperones as stress-sensing heat shock proteins, J. Cell Sci., 2002, vol. 115, no. 14, pp. 28092816.

3. Pearl, L.H. and Prodromou, C., Structure and in vivo function of Hsp90, Curr. Opin. Struct. Biol., 2000, vol. 10, no. 1, pp. 4651. https://doi.org/10.1016/S0959-440X(99)00047-0

4. Zhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A., and Houry, W.A., Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone, Cell, 2005, vol. 120, no. 5, pp. 715727. https://doi.org/10.1016/j.cell.2004.12.024

5. Kozeko, L.Ye., Heat shock proteins 90 kDa: diversity, structure, functions, Tsitologyia, 2010, vol. 52, no. 11, pp. 320.

6. Taipale, M., Jarosz, D., and Lindquist, S., HSP90 at the hub of protein homeostasis: emerging mechanistic insights, Nat. Rev. Mol. Cell Biol. 2010, vol. 11, no. 7, pp. 515528. https://doi.org/10.1038/nrm2918

7. Zou, J., Guo, Y., Guettouche, T., Smith, D.F., and Voellmy, R., Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1, Cell, 1998, vol. 94, no. 4, pp. 471480. https://doi.org/10.1016/S0092-8674(00)81588-3

8. Morimoto, R.I., Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators, Gen. Dev., 1998, vol. 12, no. 24, pp. 37883796. https://doi.org/10.1101/gad.12.24.3788

9. Rutherford, S.L. and Lindquist, S., Hsp90 as a capacitor for morphological evolution, Nature, 1998, vol. 396, no. 6709, pp. 336342. https://doi.org/10.1038/24550

10. Queitsch, C., Sangster, T.A., and Lindquist, S., Hsp90 as a capacitor of phenotypic variation, Nature, 2002, vol. 417, no. 6889, pp. 618624. https://doi.org/10.1038/nature749

11. Samakovli, D., Thanou, A., Valmas, C., and Hatzopoulos, P., Hsp90 canalizes developmental perturbation, J. Exp. Bot., 2007, vol. 58, no. 13, pp. 35153524. https://doi.org/10.1093/jxb/erm191

12. Sangster, T.A., Bahrami, A., Wilczek, A., Watanabe, E., Schellenberg, K., McLellan, C., Kelley, A., Kong, S.W., Queitsch, C., and Lindquist, S., Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels, PLoS One, 2007, no. 7, e648. https://doi.org/10.1371/journal.pone.0000648

13. Jarosz, D.F. and Lindquist, S., Hsp90 and environmental stress transform the adaptive value of natural genetic variation, Science, 2010, vol. 330, no. 6012, pp. 18201824. https://doi.org/10.1126/science.1195487

14. Sangster, T.A., Lindquist, S., and Queitsch, C., Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance, BioEssays, 2004, vol. 26, no. 4, pp. 348362. https://doi.org/10.1002/bies.20020

15. Rutherford, S., Hirate, Y., and Swala, B.J., The Hsp90 capacitor, developmental remodeling, and evolution: The robustness of gene networks and the curious evolvability of metamorphosis, Crit. Rev. Biochem. Mol. Biol., 2007, vol. 42, no. 5, pp. 355372. https://doi.org/10.1080/10409230701597782

16. Krishna, P. and Gloor, G., The Hsp90 family of proteins in Arabidopsis thaliana, Cell Stres. Chaper., 2001, vol. 6, no. 3, pp. 238246. doi 1379/1466-1268(2001)006<0238:THFOPI>2.0.CO;2

17. Yamada, K., Fukao, Y., Hayashi, M., Fukazawa, M., Suzuki, I., and Nishimura, M., Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana, J. Biol. Chem., 2007, vol. 282, no. 52, pp. 3779437804. https://doi.org/10.1074/jbc.M707168200

18. Cha, J.Y., Ahn, G., Kim, J.Y., Kang, S.B., Kim, M.R., Suudi, M., Kim, W.Y., and Son, D., Structural and functional differences of cytosolic 90-kDa heat-shock proteins (Hsp90s) in Arabidopsis thaliana, Plant Physiol. Biochem., 2013, vol. 70, pp. 368373. https://doi.org/10.1016/j.plaphy.2013.05.039

19. Karagoz, G.E. and Rudiger, S.G.D., Hsp90 interaction with clients, Trend. Biochem. Sci. 2015, vol. 40, no. 2, pp. 117125. https://doi.org/10.1016/j.tibs.2014.12.002

20. Imai, J., Maruya, M., Yashiroda, H., Yahara, I., and Tanaka, K., The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome, EMBO J., 2003, vol. 22, no. 14, pp. 35573567. https://doi.org/10.1093/emboj/cdg349

21. Park, S.J., Suetsugu, S., and Takenawa, T., Interaction of Hsp90 to N-WASP leads to activation and protection from proteasome-dependent degradation, EMBO J., 2005, vol. 24, no. 8, pp. 15571570. https://doi.org/10.1038/sj.emboj.7600586

22. Holt, S.E., Aisner, D.L., Baur, J., Tesmer, V.M., Dy, M., Ouellette, M., Trager, J.B., Morin, G.B., Toft, D.O., Shay, J.W., Wright, W.E., and White, M.A., Functional requirement of p23 and Hsp90 in telomerase complexes, Gen. Dev., 1999, vol. 13, no. 7, pp. 817826. https://doi.org/10.1101/gad.13.7.817

23. Makhnevych, T. and Houry, W.A., The role of Hsp90 in protein complex assembly, Biochim. Biophys. Acta, 2012, vol. 1823, no. 3, pp. 674682. https://doi.org/10.1016/j.bbamcr.2011.09.001

24. Kim, T.S., Jang, C.Y., Kim, H.D., Lee, J.Y., Ahn, B.Y., and Kim, J., Interaction of Hsp90 with ribosomal proteins protects from ubiquitination and proteasome-dependent degradation, Mol. Biol. Cell., 2006, vol. 17, no. 2, pp. 824833. https://doi.org/10.1091/mbc.e05-08-0713

25. Sawarkar, R., Sievers, C., and Paro, R., HSP90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli, Cell, 2012, vol. 149, no. 4, pp. 807818. https://doi.org/10.1016/j.cell.2012.02.061

26. Uversky, V.N., Oldfield, C.J., and Dunker, A.K., Showing your ID: Intrinsic disorder as an ID for recognition, regulation and cell signaling, J. Mol. Rec., 2005, vol. 18, no. 5, pp. 343384. https://doi.org/10.1002/jmr.747

27. Hahn, A., Bublak, D., Schleiff, E., and Scharf, K.D., Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato, Plant Cell, 2011, vol. 23, no. 2, pp. 741755. https://doi.org/10.1105/tpc.110.076018

28. Scharf, K.D., Berberich, T., Ebersberger, I., and Nover, L., The plant heat stress transcription factor (Hsf) family: structure, function and evolution, Biochim. Biophis. Acta, 2012, vol. 1819, no. 2, pp. 104119. https://doi.org/10.1016/j.bbagrm.2011.10.002

29. Liu, H.C., Liao, H.T., and Charng, Y.Y., The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis, Plant, Cell Environ., 2011, vol. 34, no. 5, pp. 738751. https://doi.org/10.1111/j.1365-3040.2011.02278.x

30. Charng, Y., Liu, H., Liu, N., Chi, W., Wang, C., Chang, S., and Wang, T., A heat-inducible transcription factor, HsfA2, is required for extension of acquire thermotolerance in Arabidopsis, Plant Physiol., 2007, vol. 143, no. 1, pp. 251262. https://doi.org/10.1104/pp.106.091322

31. Ogawa, D., Yamaguchi, K., and Nishiuchi, T., High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth, J. Exp. Bot., 2007, vol. 58, no. 12, pp. 33733383. https://doi.org/10.1093/jxb/erm184

32. Meiri, D. and Breiman, A., Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs, Plant J., 2009, vol. 59, no. 3, pp. 387399. https://doi.org/10.1111/j.1365-313X.2009.03878.x

33. Meiri, D., Tazat, K., Cohen-Peer, R., Farchi-Pisanty, O., Aviezer-Hagai, K., Avni, A., and Breiman, A., Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance, Plant Mol. Biol., 2010, vol. 72, no. 12, pp. 191203. https://doi.org/10.1007/s11103-009-9561-3

34. Scharf, K.D., Heider, H., Höhfeld, I., Lyck, R., Schmidt, E., and Nover, L., The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules, Mol. Cell. Biol., 1998, vol. 18, no. 4, pp. 22402251. https://doi.org/10.1128/MCB.18.4.2240

35. Kim, S.H., Lee, J.H., Seo, K.I., Ryu, B., Sung, Y., Chung, T., Deng, X.W., and Lee, J.H., Characterization of a novel DWD protein that participates in heat stress response in Arabidopsis, Mol. Cells, 2014, vol. 37, no. 11, pp. 833840. https://doi.org/10.14348/molcells.2014.0224

36. Samakovli, D., Margaritopoulou, T., Prassinos, C., Milioni, D., and Hatzopoulos, P., Brassinosteroid nuclear signaling recruits HSP90 activity, New Phytol., 2014, vol. 203, no. 3, pp. 743757. https://doi.org/10.1111/nph.12843

37. Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., and Chory, J., BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation, Cell, 2002, vol. 109, no. 2, pp. 181191. https://doi.org/10.1016/S0092-8674(02)00721-3

38. Lachowiec, J., Lemus, T., Thomas, J.H., Murphy, P.J.M., Nemhauser, J.L., and Queitsch, C., The protein chaperone HSP90 can facilitate the divergence of gene duplicates, Genetics, 2013, vol. 193, no. 4, pp. 12691277. https://doi.org/10.1534/genetics.112.148098

39. Shigeta, T., Zaizen, Y., Asami, T., Yoshida, S., Nakamura, Y., Okamoto, S., Matsuo, T., and Sugimoto, Y., Molecular evidence of the involvement of heat shock protein 90 in brassinosteroid signaling in Arabidopsis T87 cultured cells, Plant Cell Rep., 2014, vol. 33, no. 3, pp. 499510. https://doi.org/10.1007/s00299-013-1550-y

40. Kim, T.S., Kim, W.Y., Fujiwara, S., Kim, J., Cha, J.Y., Park, J.H., Lee, S.Y., and Somers, D.E., HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no, 40, pp. 1684316848. https://doi.org/10.1073/pnas.1110406108

41. Wang, R., Zhang, Y., Kieffer, M., Yu, H., Kepinski, S., and Estelle, M., HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1, Nat. Commun., 2016, vol. 7, p. 10269. doi . https://doi.org/10.1038/ncomms10269

42. Watanabe, E., Mano, S., Nomoto, M., Tada, Y., Hara-Nishimura, I., Nishimura, M., and Yamada, K., HSP90 stabilizes auxin-responsive phenotypes by masking a mutation in the auxin receptor TIR1, Plant Cell Physiol., 2016, vol. 57, no. 11, pp. 22452254. https://doi.org/10.1093/pcp/pcw170

43. Watanabe, E., Mano, S., Hara-Nishimura, I., Nishimura, M., and Yamada, K., HSP90 stabilizes auxin receptor TIR1 and ensures plasticity of auxin responses, Plant Signal. Behav., 2017, vol. 12, no. 5, e1311439. https://doi.org/10.1080/15592324.2017.1311439

44. Zhang, X.C., Millet, Y.A., Cheng, Z., Bush, J., and Ausubel, F.M., Jasmonate signalling in Arabidopsis involves SGT1bHSP70HSP90 chaperone complexes, Nat. Plants, 2015, vol. 1, 15049. https://doi.org/10.1038/nplants.2015.49

45. Song, Y.H., Estrada, D.A., Johnsonc, R.S., Kima, S.K., Leed, S.Y., MacCossc, M.J., and Imaizumia, T., Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 49, pp. 1767217677. https://doi.org/10.1073/pnas.1415375111

46. Smith, M.R., Willmann, M.R., Wu, G., Berardini, T.Z., Moller, B., Weijers, D., and Poethig, R.S., Cyclophilin 40 is required for microRNA activity in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 13, pp. 54245429. https://doi.org/10.1073/pnas.0812729106

47. Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M.C., Matsumoto-Yokoyama, E., Mitsuhara, I., Meshi, T., and Ishikawa, M., In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90, Mol. Cell., 2010, vol. 39, no. 2, pp. 282291. https://doi.org/10.1016/j.molcel.2010.05.014

48. Earley, K.W. and Poethig, R.S., Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis, J. Biol. Chem., 2011, vol. 286, no. 44, pp. 3818438189. https://doi.org/10.1074/jbc.M111.290130

49. Chang, I.F., Curran, A., Woolsey, R., Quilici, D., Cushman, J., Mittler, R., Harmon, A., and Harper, J., Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana, Proteomics, 2009, vol. 9, no, 11, pp. 29672985. https://doi.org/10.1002/pmic.200800445

50. Swatek, K.N., Graham, K., Agrawal, G.K., and Thelen, J.J., The 14-3-3 isoforms chi and epsilon differentially bind client proteins from developing Arabidopsis seed, J. Prot. Res., 2011, vol. 10, no. 9, pp. 40764087. https://doi.org/10.1021/pr200263m

51. Schweiger, R., Soll, J., Jung, K., Heermann, R., and Schwenkert, S., Quantification of interaction strengths between chaperones and tetratricopeptide repeat domain containing membrane proteins, J. Biol. Chem., 2013, vol. 288, no. 42, pp. 3061430625. https://doi.org/10.1074/jbc.M113.493015

52. Inoue, H., Li, M., and Schnell, D.J., An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 8, pp. 31733178. https://doi.org/10.1073/pnas.1219229110

53. Kovacheva, S., Bédard, J., Patel, R., Twell, D., Ríos, G., Koncz, C., and Jarvis, P., In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import, Plant J., 2005, vol. 41, no. 3, pp. 412428. https://doi.org/10.1111/j.1365-313X.2004.02307.x

54. Heide, H., Nordhues, A., Drepper, F., Nick, S., Schulz-Raffelt, M., Haehnel, W., and Schroda, M., Application of quantitative immunoprecipitation combined with knockdown and cross-linking to Chlamydomonas reveals the presence of vesicle-inducing protein in plastids 1 in a common complex with chloroplast HSP90C, Proteomics, 2009, vol. 9, no. 11, pp. 30793089. https://doi.org/10.1002/pmic.200800872

55. Feng, J., Fan, P., Jiang, P., Lv, S., Chen, X., and Li, Y., Chloroplast-targeted Hsp90 plays essential roles in plastid development and embryogenesis in Arabidopsis possibly linking with VIPP1, Physiol. Plant, 2014, vol. 150, no. 2, pp. 292307. https://doi.org/10.1111/ppl.12083

56. Ishiguro, S., Watanabe, Y., Ito, N., Nonaka, H., Takeda, N., Sakai, T., Kanaya, H., and Okada, K., SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins, EMBO J., 2002, vol. 21, no. 5, pp. 898908. https://doi.org/10.1093/emboj/21.5.898

57. Fujiwara, M., Uemura, T., Ebine, K., Nishimori, Y., Ueda, T., Nakano, A., Sato, M.H., and Fukao, Y., Interactomics of Qa-SNARE in Arabidopsis thaliana, Plant Cell Physiol., 2014, vol. 55, no 4, pp. 781789. https://doi.org/10.1093/pcp/pcu038

58. Chong L.P., Wang Y., Gad N., Anderson N., Shah B., Zhao R. A highly charged region in the middle domain of plant endoplasmic reticulum (ER)-localized heat-shock protein 90 is required for resistance to tunicamycin or high calcium-induced ER stresses, J. Exp. Bot., 2015, vol. 66, no. 1, pp. 113124. https://doi.org/10.1093/jxb/eru403

59. Carland, F.M., Fujioka, S., Takatsuto, S., Yoshida, S., and Nelson, T., The identification of CVP1 reveals a role for sterols in vascular patterning, Plant Cell, 2002, vol. 14, no. 9, pp. 20452058. https://doi.org/10.1105/tpc.003939

60. Hubert, D.A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K., and Dangl, J.L., Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein, EMBO J., 2003, vol. 22, no. 21, pp. 56795689. https://doi.org/10.1093/emboj/cdg547

61. Takahashi, A., Casais, C., Ichimura, K., and Shirasu, K., HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 20, pp. 1177711782. https://doi.org/10.1073/pnas.2033934100

62. Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., Rathjen, J.P., Bendahmane, A., Day, L., and Baulcombe, D.C., High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance, EMBO J., 2003, vol. 22, no. 21, pp. 56905699. https://doi.org/10.1093/emboj/cdg546

63. Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., and Dinesh-Kumar, S.P., Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants, J. Biol. Chem., 2004, vol. 279, no. 3, pp. 21012108. https://doi.org/10.1074/jbc.M310029200

64. Bieri, S., Mauch, S., Shen, Q.H., Peart, J., Devoto, A., Casais, C., Ceron, F., Schulze, S., Steinbiss, H.H., Shirasu, K., and Schulze-Lefert, P., RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance, Plant Cell, 2004, vol. 16, no. 12, pp. 34803495. https://doi.org/10.1105/tpc.104.026682

65. Holt III, B.F., Belkhadir, Y., and Dangl, J.L., Antagonistic control of disease resistance protein stability in the plant immune system, Science, 2005, vol. 309, no. 5736, pp. 929932. https://doi.org/10.1126/science.1109977

66. Chen, L., Hamada, S., Fujiwara, M., Zhu, T., Thao, N.P., Wong, H.L., Krishna, P., Ueda, T., Kaku, H., Shibuya, N., Kawasaki, T., and Shimamoto, K., The Hop/Sti1Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity, Cell Host Microbe, 2010, vol. 7, no. 3, pp. 185196. https://doi.org/10.1016/j.chom.2010.02.008

67. Miwa, H., Kinoshita, A., Fukuda, H., and Sawa, S., Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem, J. Plant Res., 2009, vol. 122, no. 1, pp. 3139. https://doi.org/10.1007/s10265-008-0207-3

68. You, Y., Sawikowska, A., Neumann, M., Posé, D., Capovilla, D., Langenecker, T., Neher, R.A., Krajewski, P., and Schmid, M., Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering, Nat. Commun., 2017, vol. 8, p. 15120. https://doi.org/10.1038/ncomms15120

69. Sun, B. and Ito, T., Regulation of floral stem cell termination in Arabidopsis, Front. Plant Sci., 2015, vol. 6, p. 17. https://doi.org/10.3389/fpls.2015.00017

70. Clouse, S.D., Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development, Plant Cell, 2011, vol. 23, no. 4, pp. 12191230. https://doi.org/10.1105/tpc.111.084475

71. Kozeko, L.E., Phenotypic variability of Arabidopsis thaliana seedlings as a result of inhibition of Hsp90 chaperones, Cytol. Genet., 2013, vol. 47, no. 2, pp. 7587. https://doi.org/10.3103/S0095452713020072

72. Kozeko, L.Ye., Influence of radicicol, an inhibitor of HSP90 chaperons, on growth of Arabidopsis thaliana after gamma-irradiation of seeds, Bull. Kharkiv Natl. Agrar. Univ. Ser. Biol., 2015, vol. 34, no. 1, pp. 1421.

73. Craig, A., Ewan, R., Mesmar, J., Gudipati, V., and Sadanandom, A., E3 ubiquitin ligases and plant innate immunity, J. Exp. Bot., 2009, vol. 60, no. 4, pp. 11231132. https://doi.org/10.1093/jxb/erp059

74. Kadota, Y., Shirasu, K., and Guerois, R., NLR sensors meet at the SGT1-HSP90 crossroad, Trends Biochem. Sci., 2010, vol. 35, no. 4, pp. 199207. https://doi.org/10.1016/j.tibs.2009.12.005

75. Waddington, C.H., Canalization of development and the inheritance of acquired characters, Nature, 1942, vol. 150, no. 3811, pp. 563565. https://doi.org/10.1038/150563a0

76. Gärtner, K., A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals?, Lab. Anim., 1990, vol. 24, no. 1, pp. 7177. https://doi.org/10.1258/002367790780890347

77. Lajus, D., Graham, J.H., and Kozhara, A., Developmental instability and the stochastic component of total phenotypic variance, in Developmental Instability: Causes and Consequences, New York: Oxford University Press, 2003, pp. 343363.

78. Forde, G.B., Is it good noise? The role of developmental instability in the shaping of a root system, J. Exp. Bot., 2009, vol. 60, no. 14, pp. 39894002. https://doi.org/10.1093/jxb/erp265

79. Shahrezaei, V. and Swain, P.S., The stochastic nature of biochemical networks, Cur. Opin. Biotech., 2008, vol. 19, no. 4, pp. 369374. https://doi.org/10.1016/j.copbio.2008.06.011

80. Ribeiro, A.S., Smolander, O., Rajala, T., Häkkinen, A., and Yli-Harja, O., Delayed stochastic model of transcription at the single nucleotide level, J. Comput. Biol., 2009, vol. 16, no. 4, pp. 539553. https://doi.org/10.1089/cmb.2008.0153

81. Sigworth, F.J., Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuations, Biophys. J., 1985, vol. 47, no. 5, pp. 709720. https://doi.org/10.1016/S0006-3495(85)83968-0

82. Sangster, T.A., Salathia, N., Lee, H.N., Watanabe, E., Schellenberg, K., Morneau, K., Wang, H., Undurraga, S., Queitsch, C., and Lindquist, S., HSP90-buffered genetic variation is common in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 8, pp. 29692974. https://doi.org/10.1073/pnas.0712210105

83. Borkovich, K.A., Ferrelly, F.W., Finkelstein, D.B., Tauliey, J., and Lindquist, S., Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures, Mol. Cell. Biol., 1989, vol. 9, no. 9, pp. 39193930.

84. Bandura, J.L., Jiang, H., Nickerson, D.W., and Edgar, B.A., The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster, PLoS Genet., 2013, vol. 9, no. 9, e1003835. https://doi.org/10.1371/journal.pgen.1003835

85. Prasinos, C., Krampis, K., Samakovli, D., and Hatzopoulos, P., Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development, J. Exp. Bot., 2005, vol. 56, no. 412, pp. 633644. https://doi.org/10.1093/jxb/eri035

86. Oh, S.E., Yeung, C., Babaei-Rad, R., and Zhao, R., Cosuppression of the chloroplast localized molecular chaperone HSP90.5 impairs plant development and chloroplast biogenesis in Arabidopsis, BMC Res. Not., 2014, vol. 7, no. 1, 643. https://doi.org/10.1186/1756-0500-7-643

87. Yeyati, P.L., Bancewicz, R.M., Maule, J., and van Heyningen, V., Hsp90 selectively modulates phenotype in vertebrate development, PLoS Genet., 2007, vol. 3, no. 3, e43. https://doi.org/10.1371/journal.pgen.0030043

88. Ali, A., Bharadwaj, S., OCarroll, R., and Ovsenek, N., Hsp90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes, Mol. Cell. Biol., 1998, vol. 18, pp. 49494960. https://doi.org/10.1128/MCB.18.9.4949

89. Uversky, V.N., What does it mean to be natively unfolded?, Eur. J. Biochem., 2002, vol. 269, no. 1, pp. 212. https://doi.org/10.1046/j.0014-2956.2001.02649.x

90. Bradshow, A.D., Evolutionary significance of phenotypic plasticity in plants, Adv. Genet. 1965, vol. 13, no. 2, pp. 115155. https://doi.org/10.1016/S0065-2660(08)60048-6

91. Kordyum, E.L., Sytnik, K.M., Baranenko, V.V., Belyav-skaya, N.A., Klimchuk, D.A., and Nedukha, E.M., Cell Mechan. Plant Adapt. Adv. Environ. Factors Nat. Condit., Kiev: Naukova Dumka. 2003.

92. Slack, J.M.W., Conrad Hal Waddington: the last Renaissance biologist?, Nat. Rev. Genet., 2002, vol. 3, no. 11, pp. 889895. https://doi.org/10.1038/nrg933

93. Lin, Y. and Cheng, C.L., A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus, Plant Cell, 1997, vol. 9, no. 1, pp. 2135. https://doi.org/10.1105/tpc.9.1.21

94. Cao, D., Lin, Y., and Cheng, C.L., Genetic interactions between the chlorate-resistant mutant cr88 and the photomorphogenic mutants cop1 and hy5, Plant Cell, 2000, vol. 12, no. 2, pp. 199210. https://doi.org/10.1105/tpc.12.2.199

95. Kitano, H., Biological robustness, Nat. Rev. Genet., 2004, vol. 5, no. 11, pp. 826836. https://doi.org/10.1038/nrg1471

96. Kimura, M., Neutr. Theor. Mol. Evolut., New York: Cambridge Univ. Press, 1983.

97. Mitchell-Olds, T. and Schmitt, J., Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis, Nature, 2006, vol. 441, no. 7096, pp. 947952. https://doi.org/10.1038/nature04878

98. Sangster, T.A., Salathia, N., Undurraga, S., Milo, R., Schellenberg, K., Lindquist, S., and Queitsch, C., HSP90 affects the expression of genetic variation and development stability in quantitative traits, Proc. Natl. Acad. Sci. U. S. A. 2008, vol. 105, no. 8, pp. 29632968. https://doi.org/10.1073/pnas.0712200105

99. Abbott, R.J. and Gomes, M.F., Population genetic structure and outcrossing rate of Arabidopsis thaliana (L.) Heynh., Heredity, 1989, vol. 62, no. 3, pp. 411418. https://doi.org/10.1038/hdy.1989.56

100. Koornneef, M., Dellaert, L.W.M., and Van Der Veen, J.H., EMS-induced and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh, Mutat. Res., 1982, vol. 93, no. 1, pp. 109123. https://doi.org/10.1016/0027-5107(82)90129-4

101. Grodzinsky, D.M., Plant Radiobiology, Kiev: Naukova Dumka, 1989.

102. Grodzinsky, D.M., Dmitriev, O.P., Gusha, M.I., Kolomiets, O.D., Kravetz, O.A., and Rashydov, N.M., UV-B Radiation and Plants: Mechanisms of Damage and Protection, Kyiv: Fitosotsiotsentr, 2007.

103. Gorobchenko, O.A., Nikolov, O.T., and Gatash, S.V., Influence of γ-irradiation on thermal-evoked conformational transitions and hydration of fibrinogen, Biopol. Cell, 2006, vol. 22, no. 2, pp. 162165. https://doi.org/10.7124/bc.00072C

104. Kozeko L., Talalaiev O., Neimash V., Povarchuk V. A protective role of HSP90 chaperone in gamma-irradiated Arabidopsis thaliana seeds, Life Sci. Space Res. 2015, vol. 6, pp. 518. doi . https://doi.org/10.1016/j.lssr.2015.07.002

105. Kozeko, L.Ye., Chaperones HSP90 as a stabilizer of plant growth and morphogenesis: a microevolutionary aspect, Fact. Exp. Evol. Organ., 2016, vol. 18, pp. 4245.

106. Sollars, V., Lu, X., Xiao, L., Wang, X., Garfinkel, M.D., and Ruden, D.M., Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution, Nat. Genet., 2003, vol. 33, no. 1, pp. 7074. https://doi.org/10.1038/ng1067

107. Specchia, V., Piacentini, L., Tritto, P., Fanti, L., DAlessandro, R., Palumbo, G., Pimpinelli, S., and Bozzetti, M.P., Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons, Nature, 2010, vol. 463, no. 7281, pp. 662665. https://doi.org/10.1038/nature08739

108. Ananthan, J., Goldberg, A.L., and Voellmy, R., Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes, Science, 1986, vol. 232, no. 4749, pp. 5225224. https://doi.org/10.1126/science.3083508

109. Mathew, A. and Morimoto, R.I., Role of the heatshock response in the life and death of proteins, in Stress of Life from Molecules to Man, Ann. N.Y. Acad. Sci., 1998, vol. 851, pp. 99111. https://doi.org/10.1111/j.1749-6632.1998.tb08982.x

110. Höhfeld, J., Cyr, D.M., and Patterson, C., From the cradle to the grave: molecular chaperones that may choose between folding and degradation, EMBO Rep., 2001, vol. 2, no. 10, pp. 885890. https://doi.org/10.1093/embo-reports/kve206

111. Wiech, H., Buchner, J., Zimmermann, R., and Jakob, U., Hsp90 chaperones protein folding in vitro, Nature, 1992, vol. 358, no. 6382, pp. 169170. https://doi.org/10.1038/358169a0

112. Fernandes, M., Obrien, T., and Lis, J.T., Structure and regulation of heat shock gene promoters, in The Biology of Heat Shock Proteins and Molecular Chaperones, New York: Cold Spring Harbor Laboratory Press, 1994, pp. 375393. https://doi.org/10.1101/087969427.26.375

113. Akerfelt, M., Morimoto, R.I., and Sistonen, L., Heat shock factors: integrators of cell stress, development and lifespan, Nat. Rev. Mol. Cell Biol., 2010, vol. 11, no. 8, pp. 545555. https://doi.org/10.1038/nrm2938

114. McLellan, C.A., Turbyville, T.J., Wijeratne, E.M., Kerschen, A., Vierling, E., Queitsch, C., Whitesell, L., and Gunatilaka, A.A., A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor, Plant Physiol., 2007, vol. 145, no. 1, pp. 174182. https://doi.org/10.1104/pp.107.101808

115. Kozeko, L.Ye., Changes in heat-shock protein synthesis and thermotolerance of Arabidopsis thaliana seedlings resulting from Hsp90 inhibition by geldanamycin, Cell Tiss. Biol., 2014, vol. 8, no. 5, pp. 416422. https://doi.org/10.1134/S1990519X14050046

116. von Koskull-Döring, P., Scharf, K.D., and Nover, L., The diversity of plant heat stress transcription factors, Trends Plant Sci., 2007, vol. 12, no. 10, pp. 452457. https://doi.org/10.1016/j.tplants.2007.08.014

117. Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E., and von Koskull-Doring, P., A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis, Plant J., 2008, vol. 53, no. 2, pp. 264274. https://doi.org/10.1111/j.1365-313X.2007.03334.x

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 29.11.21