TSitologiya i Genetika 2020, vol. 54, no. 6, 45-53
Cytology and Genetics 2020, vol. 54, no. 6, 539–545, doi: https://www.doi.org/10.3103/S0095452720060122

Tlr2, Tjp1 genes expression during restoration of skin integrity

Huet А., Dvorshchenko К., Taburets O., Grebinyk D., Beregova T., Ostapchenko L.

  • Educational and Scientific Center «Institute of Biology and Medicine», Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., Kyiv 01601

SUMMARY. The decrease of Tjp1 gene expression against the background of activation of free radical processes (increase in the content of superoxide anion-radical) was observed during healing of full-thickness skin wounds in rats. The restoration of the expression level of this gene may be mediated by an increase in the expression level of Tlr2 gene. The level of Tjp1 gene expression as well as the content of the superoxide anion radical, was closer to the control values at the specified wound pattern in the absence of Tlr2 gene overexpression upon the treatment with melanin during restoration of skin integrity.

Keywords: Tjp1, Tlr2 gene expression, full-thickness skin wound, melanin

TSitologiya i Genetika
2020, vol. 54, no. 6, 45-53

Current Issue
Cytology and Genetics
2020, vol. 54, no. 6, 539–545,
doi: 10.3103/S0095452720060122

Full text and supplemented materials


1. Penn, J.W., Grobbelaar, A.O., and Rolfe, K.J., The role of the TGF-? family in wound healing, burns and scarring: a review, Int. J. Burn. Trauma, 2012, vol. 2, no. 1, pp. 18–28.

2. Kuo, I.-H., Carpenter-Mendini, A., Yoshida, T., McGirt, L.Y., Ivanov, A.I., Barnes, K.C., Gallo, R.L., Borkowski, A.W., Yamasaki, K., Leung, D.Y., Georas, S.N., De Benedetto, A., and Beck, L.A., Activation of epidermal toll-like receptor 2 enhances tight junction function—implications for atopic dermatitis and skin barrier repair, J. Invest. Dermatol., 2013, vol. 133, no. 4, pp. 988–998. https://doi.org/10.1038/jid.2012.437

3. Korotkyi, O., Dvorshchenko, K., Vovk, A., Dranitsina, A., Tymoshenko, M., Kot, L., and Ostapchenko, L., Effect of probiotic composition on oxidative/antioxidant balance in blood of rats under experimental osteoarthritis, Ukr. Biochem. J., 2019, vol. 91, no. 6, pp. 49–58. https://doi.org/10.15407/ubj91.06.049

4. Wagener, F.A., Carels, C.E., and Lundvig, D.M., Targeting the redox balance in inflammatory skin conditions, Int. J. Mol. Sci., 2013, vol. 14, no. 9, pp. 126–167. https://doi.org/10.3390/ijms14059126

5. Dranitsina, A.S., Taburets, O.V., Dvorshchenko, K.O., Grebinyk, D.M., Beregova, T.V., and Ostapchenko, L.I., TGFB 1, PTGS 2 genes expression during dynamics of wound healing and with the treatment of melanin, Res. J. Pharm., Biol. Chem. Sci., 2017, vol. 8, no. 1, pp. 2014–2023. https://doi.org/10.3103/S0095452718030039

6. Addor, F.A.S., Antioxidants in dermatology, An. Bras. Dermatol. 2017, vol. 92, no. 3, pp. 356–362. https://doi.org/10.1590/abd1806-4841.20175697

7. Cario, E., Gerken, G., and Podolsky, D.K., Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C, Gastroenterology. 2004, vol. 127, pp. 224–238. https://doi.org/10.1053/j.gastro.2004.04.015

8. Yuki, T, Yoshida, H., Akazawa, Y., Komiya, A., Sugiyama, Y., and Inoue, S., Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes, J. Immunol., 2011b, vol. 187, pp. 3230–3237. https://doi.org/10.4049/jimmunol.1100058

9. Rajaiah, R., Perkins, D.J., Ireland, D.D.C., and Vogel, S.N., CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 8391–8396. https://doi.org/10.1073/pnas.1424980112

10. Sun, L., Liu, W., and Zhang, L.-J., The role of Toll-like receptors in skin host defense, psoriasis, and atopic dermatitis, J. Immunol. Res., 2019. https://doi.org/10.1155/2019/1824624

11. Bo Zhang, Yeong Min Choi, Junwoo Lee, In Sook An, Li Li, Congfen He, Yinmao Dong, Seung-hee Bae, and Hong Meng, Toll-like receptor 2 plays a critical role in pathogenesis of acne vulgaris, Med. Dermatol., 2019, vol. 4, pp. 1–6. https://doi.org/10.1186/s41702-019-0042-2

12. Niebuhr, M., Lutat, C., Sigel, S., and Werfel, T., Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis, Allergy, 2009, vol. 64, pp. 1580–1587. https://doi.org/10.1111/j.1398-9995.2009.02050.x

13. Brandner, J.M., Kief, S., Grund, C., Rendl, M., Houdek, P., Kuhn, C., Tschachler, E., Franke, W.W., and Moll, I., Organization and formation of the tight junction system in human epidermis and cultured keratinocytes, Eur. J. Cell Biol., 2002, vol. 81, pp. 253–263. https://doi.org/10.1078/0171-9335-00244

14. Qiao X, Roth I, F?raille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion, Cell Cycle, 2014, vol. 13, no. 19, pp. 3059–3075. https://doi.org/10.4161/15384101.2014.949091

15. Steed, E., Balda, M.S., and Matter, K., Dynamics and functions of tight junctions, Trends Cell Biol., 2010, vol. 20, pp. 142–149.https://doi.org/10.1016/j.tcb.2009.12.002

16. Bauer, H., Zweimueller-Mayer, J., Steinbacher, P., Lametschwandtner, A., and Bauer, H.C., The dual role of zonula occludens (ZO) proteins, J. Biomed. Biotechnol., 2010, vol. 2010, p. 402593. https://doi.org/10.1155/2010/402593

17. Stacey, A. N. D’Mello, Graeme, J. Finlay, Bruce C., Baguley, Marjan, E., Askarian-Amiri., Signal. Path. Melanog., 2016, vol. 17, no. 7, p. 1144. https://doi.org/10.3390/ijms17071144

18. El-Obeid, A., Al-Harbi, S., Al-Jomah, N., Hassib, A., Herbal melanin modulates tumor necrosis factor (TNF-alfa), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) production, Phytomedicine, 2006, vol. 13, pp. 324–33. https://doi.org/10.1016/j.phymed.2005.03.007

19. Golyshkin, D.V., Falaleeva, T.M., Neporada, K.S., and Beregova, T.V., Effect of melanin on the condition of gastric mucosa and reaction of the hypothalamic-pituitary-adrenal axis under acute stress, Physiol. J., 2015, vol. 61, no. 2, pp. 65–72. https://doi.org/10.15407/fz61.02.065

20. Henry, S.L., Concannon, M.J., and Yee, G.J., The effect of magnetic fields on wound healing. Experimental study and review of the literature, Open Acc. J. Plast. Surg., 2008, vol. 8, pp. 393–399.

21. Bilyayeva, O., Neshta, V.V., Golub, A., and Sams-Dodd, F., Effects of sea silon wound healing in the rat, J. Wound Care, 2014, vol. 23, no. 8, pp. 140–146. https://doi.org/10.12968/jowc.2014.23.8.410

22. Schafer, M. and Werner, S., Oxidative stress in normal and impaired wound repair, Pharmacol. Res., 2008, vol. 58, pp. 165–171. https://doi.org/10.1016/j.phrs.2008.06.004

23. Sutherland, M.W. and Learmonth, B.A., The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase, Free Radic. Res., 1997, vol. 27, no. 3, pp. 283–289. https://doi.org/10.3109/10715769709065766

24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275. PubMed PMID: 14907713

25. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal. Biochem., 1987, vol. 162, no. 1, pp. 156–159. https://doi.org/10.1006/abio.1987.9999

26. Lee, W.H., Sonntag, W.E., Mitschelen, M., Yan, H., and Lee, Y.W., Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain, Int. J. Radiat. Biol., 2010, vol. 280, no. 2, pp. 132–144. https://doi.org/10.3109/09553000903419346

27. Sakuma, S., Kitamura, T., Kuroda, C., Takeda, K., Nakano, S., Hamashima, T., Kohda, T., Wada, S., Arakawa, Y., and Fujimoto, Y., All-trans arachidonic acid generates reactive oxygen species via xanthine dehydrogenase/xanthine oxidase interconversion in the rat liver cytosol in vitro, J. Clin. Biochem. Nutr., 2012, vol. 51, no. 1, vol. 51, no. 1, pp. 55–60. https://doi.org/10.3164/jcbn.11-97

28. Langbein, H., Brunssen, C., Hofmann, A., Cimalla, P., Brux, M., Bornstein, S.R., Deussen, A., Koch, E., and Morawietz, H., NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice, Eur. Heart J., 2016, vol. 37, no. 22, pp. 1753–1761. https://doi.org/10.1093/eurheartj/ehv564

29. Guo, W., Wang, P., Liu, Z., and Ye, P., Analysis of differential expression of tight junction proteins in cultured oral epithelial cells altered by Porphyromonas gingivalis, Porphyromonas gingivalis lipopolysaccharide, and extracellular adenosine triphosphate, Int. J. Oral. Sci., 2018, vol. 10, no. 1, e8. https://doi.org/10.1038/ijos.2017.51

30. De Benedetto, A., Rafaels, N.M., McGirt, L.Y., Ivanov, A.I., Georas, S.N., Cheadle, C., Berger, A.E., Zhang, K., Vidyasagar, S., Yoshida, T., Boguniewicz, M., Hata, T., Schneider, L.C., Hanifin, J.M., Gallo, R.L., Novak, N., Weidinger, S., Beaty, T.H,, Leung, D.Y., Barnes, K.C., and Beck, L.A., Tight junction defects in patients with atopic dermatitis, J. Allerg. Clin. Immun., 2011, vol. 127, pp. 773–786, e1–e7. https://doi.org/10.1016/j.jaci.2010.10.018

31. Dickel, H., Gambichler, T., Kamphowe, J., Altmeyer, P., and Skrygan, M., Standardized tape stripping prior to patch testing induces upregulation of Hsp90, Hsp70, IL-33, TNF-alpha and IL-8/CXCL8 mRNA: new insights into the involvement of ‘alarmins’, Contact Dermatitis, 2010, vol. 63, pp. 215–222. https://doi.org/10.1111/j.1600-0536.2010.01769.x

32. Berthelot, J.-M., Sellam, J., Maugars, Y., and Berenbaum, F., Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis, RMD Open, 2019, vol. 5, e001037. https://doi.org/10.1136/rmdopen-2019-001037

33. Rajaiah, R., Perkins, D.J., Ireland, D.D.C., and Vogel, S.N., CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 8391–8396. https://doi.org/10.1073/pnas.1424980112

34. Dana, N., Vaseghi, G., and Javanmard, S.H., Crosstalk between peroxisome proliferator-activated receptors and Toll-like receptors: a systematic review, Adv. Pharm. Bull., 2019, vol. 9, no. 1, pp. 12–21. https://doi.org/10. 15171/apb.2019.003

35. Jin, H., Kumar, L., Mathias, C., Zurakowski, D., Oettgen, H., Gorelik, L., and Geha, R., Toll-like receptor 2 is important for the T(H)1 response to cutaneous sensitization, J. Allerg. Clin. Immun., 2009, vol. 123, no. 4, pp. 875–882. https://doi.org/10.1016/j.jaci.2009.02.007

36. Nahid, M.A., Satoh, M., and Chan, E.K., Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling, J. Immunol., 2011, vol. 186, pp. 1723–1734. https://doi.org/10.4049/jimmunol.1002311

37. Ding, Y., Wang, L., Zhao, Q., Wu, Z., and Kong, L., MicroRNA-93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF-kB signaling pathway, Int. J. Mol. Med., 2019, vol. 43, no. 2, pp. 779–790. https://doi.org/10.3892/ijmm.2018.4033

38. Cui, Y., Wang, X.L., Xue, J., Liu, J.Y., and Xie, M.L., Chrysanthemum morifolium extract attenuates high-fat milk-induced fatty liver through peroxisome proliferator-activated receptor alpha-mediated mechanism in mice, Nutr. Res., 2014, vol. 34, pp. 268–275. https://doi.org/10.1016/j.nutres.2013.12.010