Rye (Secale L.) is a member of family Poaceae (tribe Triticeae) and includes perennial or annual, self-incompatible or self-compatible, and cultivated, weedy or wild species. Classification of the genus Secale is inconsistent, and comprises 3-4 to 8 species from the phylogenetic studies in the last ten years. Progress in rye breeding has been significantly reduced due to involving a small number of cultivars and landraces in crosses. The wild rye species and subspecies possess many valuable breeding traits for research aimed at expanding the variability in Secale cereale subsp. cereale. They are, due to their genetic diversity and high breeding trait expression, useful sources of genes for tetraploid and hexaploid wheat, and triticale improvement, too. One of the species, S. vavilovii, is attractive for rye breeding due to its high self-fertility, resistance to fusarium ear blight, septoria leaf blotch, high protein content, sprouting and sterilising cytoplasm, and genetic similarity with S. cereale subsp. dighoricum. Chromosomes of S. strictum are sources for resistance to yellow rust, Russian wheat aphid, grain hardness, increased protein and arabinoxylan content.
Keywords: Genus Secale, classification, feral rye, wild rye species, genetic diversity, useful breeding traits
Full text and supplemented materials
References
1. Vences, F.J., Vaquero, F., Garcia, P., and De la Vega, P., Further studies on phylogenetic relationships in Secale: On the origin of its species, Plant Breed., 1987, vol. 98, no. 4, pp. 281–291.
2. Tang, Z.X., Ross, K., Ren, Z.L., Yang, Z.J., Zhang, H.Y., Chikmawati, T., Miftahudin, and Gustafson, J.P., Secale, in Wild Crop Relatives: Genomic and Breeding Resources, Cereals, Kole, C., Ed., Berlin: Springer-Verlag, 2011, pp. 367–396.
3. Chikmawati, T., Schovmond, B., and Gustafson, J.P., Phylogenetic relationships in Secale revealed by amplified fragment length polymorphism, Genome, 2005, vol. 48, pp. 792–801.
4. Vavilov, N.I.,On the origin of cultivated rye, Bull. Appl. Bot.,Plant Breed., 1917, vol. 10, pp. 561–590.
5. Sarcheshmeh, P., Mozafari, J., Mehrvarz, S., and Shahmoradi, S., Genetic and ecogeographical diversity of rye (Secale L.) species growing in Iran, based on morphological traits and RAPD markers, Genet. Resour. Crop Evol., 2018, vol. 65, no. 7, pp. 1953–1962. https://doi.org/10.1007/s10722-018-0667-9
6. Sencer, H.A. and Hawkes, J.G., On the origin of cultivated rye, Biol. J. Linn. Soc., 1980, vol. 13, pp. 299–313.
7. Skuza, L., Szućko, I., Filip, E., and Adamczyk, A., DNA barcoding in selected species and subspecies of rye (Secale) using three chloroplast loci (matK, rbcL, trnH-psbA), Not. Bot. Horti Agrob., 2019, vol. 47, no. 1, pp. 54–62.https://doi.org/10.15835/nbha47111248
8. Bolibok-Brągoszewska, H., Targońska, M., Bolibok, L., Kilian, A., and Rakoczy-Trojanowska, M., Genome-wide characterization of genetic diversity and population structure in Secale,BMC Plant Biol., 2014, vol. 14, p. 184.
9. Schlegel, R., Current list of wheats with rye introgression of homoeologous group 1, 2nd update. Wheat Inf. Serv., 1997, vol. 84, pp. 64–69.
10. Schlegel, R., Current list of wheats with rye and alien introgression, 2006. www.rye-gene-map.de/rye-introgression.
11. Schlegel, R., Hybrid breeding boosted molecular genetics in rye, Rus. J. Genet., 2016, vol.6, no 5, pp. 569–583.
12. Broda, Z., Tomkowiak, A., Mikołajczyk, S., Weigt, D., Górski, F., and Kurasiak-Popowska, D., The genetic polymorphism between the wild species and cultivars of rye Secale cereale L., Acta Agrobot., 2016, vol. 69, no. 3, p. 1652. https://doi.org/10.5586/aa.1652
13. Bolibok-Brągoszewska, H. and Rakoczy-Trojanowska, M., Molecular marker based assessment of genetic diversity in rye, in Genetic Diversity and Erosion in Plants, Ahuja, M.R. and Jain, S.M., Eds., Sustainable Development and Biodiversity Book Series SDEB, vol. 7, Switzerland: Springer, 2015, vol. 1, pp. 105–123.
14. Frederiksen, S. and Petersen, G., A taxonomic revision of Secale.Nordic J. Bot., 1998, 18, pp. 399–420.
15. Khush, G.S., Cytogenetic and evolutionary studies in Secale. II. Interrelationships of the wild species, Evolution, 1962, vol. 16, pp. 484–496.
16. Sjödin, J. and Ellerström, S., Note on some diploid and tetraploid hybrids in the genus Secale,Hereditas, 1969, vol. 62, no. 3, pp. 433–437.
17. Persson, K. and Bothmer, R.V., Assessing the allozyme variation in cultivars and Swedish landraces of rye (Secale cereale L.), Hereditas, 2000, vol. 132, pp. 7–17.
18. Persson, K. and Bothmer R.V., Genetic diversity amongst landraces of rye (Secale cereale L.) from northern Europe, Hereditas, 2002,vol. 136, pp. 29–38.
19. Dedio, W., Kaltsikes, P.J., and Larter, E.N., Numerical chemotaxonomy in the genus Secale.Can. J. Bot., 1969, vol. 47, pp. 1175–1180.
20. Reddy, P., Appel, R., and Baum, B.R., Ribosomal DNA spacer-length variation in Secale spp. (Poaceae), Plant Syst Evol., 1990, vol. 171, pp. 205–220.
21. Anamthawat-Jónsson, K. and Heslop-Harrison, J.S., Isolation and characterization of genome-specific DNA sequences in Triticeae species, Mol. Gen. Genet., 1992, vol. 240, pp. 151–158.
22. Anamthawat-Jónsson, K., Heslop-Harrison, J.S., and Schwarzacher, T., Genomic in situ hybridization for whole chromosomes and genome analysis, in In Situ Hybridization Laboratory Companion, Clark, M., Ed., London, UK: Chapman and Hall, 1996, pp. 1–23.
23. Chikmawati, T., Miftahudin, M., Schovmond, B., and Gustafson, J.P., Amplified fragment length polymorphism-based genetic diversity among cultivated and weedy rye (Secale cereale L.) accessions. Gen. Resour. Crop Ev., 2012, vol. 59, no. 8, pp. 1743–1752.
24. Ma, R., Yli-Mattila, T., and Pulli, S., Phylogenetic relationships among genotypes of worldwide collection of spring and winter ryes (Secale cereale L.) determined by RAPD-PCR markers, Hereditas, 2004, vol. 140, pp. 210–221.
25. Ćwiklińska, A., Broda, Z., Bocianowski, J., and Dobrzycka, A., The usefulness of RAPD and AFLP markers for determining genetic similarity in rye (Secale L.) species and subspecies, Acta Biol. Crac. Ser. Bot., 2010, vol. 52, no. 1, pp. 19–25. https://doi.org/10.2478/v10182-010-0003-y
26. Shang, H., Wei, Y., Wang, X., and Zheng, Y., Genetic diversity and phylogenetic relationships in the rye genus Secale L. (rye) based on Secale cereale microsatellite markers, Genet. Mol. Biol., 2006, vol. 29, no. 4, pp. 685–691.
27. Fu, S., Tang, Z., Ren, Z., Zhang, H., and Yan, B., Isolation of rye-specific DNA fragment and genetic diversity analysis of rye genus Secale L. using wheat SSR markers, J. Genet., 2010, vol. 89, no. 4, pp. 489–492.
28. Monteiro, F., Vidigal, P., Barros, A.B., Monteiro, A., Oliveira, H.R., and Viegas, W., Genetic distinctiveness of rye in situ accessions from Portugal unveils a new hotspot of unexplored genetic resources, Front. Plant Sci., 2016, vol. 7, p. 1334. https://doi.org/10.3389/fpls.2016.01334
29. Isik, Z., Parmaksiz, I., Coruh, C., Gevlan-Su, Y.S., Cebeci, O., Beecher, B., and Budak, H., Organellar genome analysis of rye (Secale cereale) representing diverse geographic regions. Genome, 2007, vol. 50, pp. 724–734.
30. De Bustos, A. and Jouve, N., Phylogenetic relationships of the genus Secale based on the characterisation of rDNA ITS sequences, Plant Syst. Evol., 2002, 235, pp. 147–154.
31. Ren, T.H., Chen, F., Zou, Y.T., Jia, Y.H., Zhang, H.Q., Yan, B.J., and Ren, Z.L., Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale,Genome, 2011, vol. 54, no. 4, pp. 316–326. https://doi.org/10.1139/g10-121
32. Skuza, L., Rogalska, S.M., and Bocianowski, J., RFLP analysis of mitochondrial DNA in the genus Secale.Acta Biol. Crac. Bot., 2007, vol. 49, pp. 77–87.
33. Chen, Q.J., Yuan, Z.W., Zhang, L.Q., Yan, Z.H., Xiang, Z.G., Wan, Y.F., Zheng, Y.L., Liu, D.C., Molecular characterization and comparative analysis of four new genes from Sec2 locus encoding 75K gamma-secalins of rye species, J. Cereal Sci., 2008, vol. 48, pp. 111–116 (EF432549).
34. Evtushenko, E.V., Elisafenko, E.A., Gatzkaya, S.S., Lipikhina, Y.A., Houben, A., and Vershinin, A.V., Conserved molecular structure of the centromeric histone CENH3 in Secale and its phylogenetic relationships, Sci. Rep., 2017, vol. 7, p. 17628. https://doi.org/10.1038/s41598-017-17932-8
35. Al-Beyroutiová, M., Sabo, M., Sleziak, P., Dušinský, R., Birčák, E., Hauptvogel, P., Kilian, A., and Švec, M., Evolutionary relationships in the genus Secale revealed by DArTseq DNA polymorphism, Plant Syst. Evol., 2016. https://doi.org/10.1007/s00606-016-1318-2
36. Targońska-Karasek, M., Bolibok-Brągoszewska, H., Oleniecki, T., Sharifova, S., Kopania, M., and Rakoczy-Trojanowska, M., Verification of taxonomic relationships within the genus Secale (Poaceae: Pooideae: Triticeae) based on multiple molecular methods, Phytotaxa, 2018, vol. 383, no. 2, pp. 128–146. https://doi.org/10.11646/phytotaxa.383.2.1
37. GRIN, 2019, Agricultural Research Service, National Plant Germplasm System, 2019. Germplasm Resources Information Network (GRIN-Taxonomy), National Germplasm Resources Laboratory, Beltsville, Maryland. URL:.http://npgsweb.ars-grin.gov/gringlobal/taxon/ taxonomysearchcwr.aspx. Accessed April 21, 2019.
38. Jaaska, V., On the origin and in statu nascendi domestication of rye and barley: a review, in The Origins of Agriculture and Crop Domestication. Proceedings of the Harlan Symposium 10–14 May 1997, Damania, A.B., Valkoun, J., Willcox, G., and Qualset, C.O., Eds., Aleppo, Syria, IPGRI, 1998, part 4: Domestication of Crop Plants, pp. 210–217.
39. Knüpffer, H., Rye genetic resources in the world’s genebanks, in Int. Conf. “More Attention to Rye,” Tartu, Estonia, October 6–8, 2011, and the AEGIS Workshop “Improving the Prerequisites for a European Rye Collection”, Radzików, Poland, October 13–14,2011.
40. Roshevitz, R.Y., A monograph of the wild, weedy and cultivated species of rye, Acta Inst. Bot. Nom. Acad. Sci. USSR, Ser. 1: Fe et Syst., 1947, vol. 6, pp. 105–163.
41. Clayton, W.D., Vorontsova, M.S., Harman, K.T., and Williamson, H., GrassBase—The Online World Grass Flora, Descriptions, Ver. February 3, 2016. Copyright The Board of Trustees, Royal Botanic Gardens, Kew.
42. Burger, J.C., Lee, S., and Ellstrand, N.C., Origin and genetic structure of feral rye in the western United States, Mol. Ecol., 2006, vol. 15, no. 9, pp. 2527–2539.
43. White, A.D., Lyon, D.J., Mallory-Smith, C., Medlin, C.R., Yenish, J.P., Feral rye (Secale cereale) in agricultural production systems, Weed Technol., 2006, vol. 20, no. 3, pp. 815–823.
44. Cuadrado, A. and Jouve, N., Evolutionary trends of different repetititve DNA sequences during speciation in the genus Secale,J. Hered., 2002, vol. 93, pp. 339–345.
45. Achrem, M., Kalinka, A., and Rogalska, S.M., Assessment of genetic relationships among Secale taxa by using ISSR and IRAP markers and the chromosomal distribution of the AAC microsatellite sequence, Turk. J. Bot., 2014, vol. 38, pp. 213–225. https://doi.org/10.3906/bot-1207-26
46. Kalinka, A., Achrem, M., and Poter, P., The DNA methylation level against the background of the genome size and t-heterochromatin content in some species of the genus Secale L., PeerJ., 2017, vol. 5. e2889. https://doi.org/10.7717/peerj.2889
47. Hagenblad, J., Oliveira, H.R., Forsberg, N.E.G., and Leino, M.W., Geographical distribution of genetic diversity in Secale landrace and wild accessions, BMC Plant Biol., 2016, vol. 16, p. 23. https://doi.org/10.1186/s12870-016-0710-y
48. Maraci, Ö., Özkan, H., and Bilgin, R., Phylogeny and genetic structure in the genus Secale, PLoS One, 2018, vol. 13, no. 7, e0200825.https://doi.org/10.1371/journal.pone.0200825
49. Santos, E., Matos, M., Silva, P., Figueiras, A.M., Benito, C, and Pinto-Carnide, O., Molecular diversity and genetic relationships in Secale,J. Genet., 2016, vol. 95, no. 2, pp. 273–281.
50. Santos, E., Benito, C, Silva-Navas, J., Gallego, F.J., Figueiras, A.M., Pinto-Carnide, O., and Matos, M., Characterization, genetic diversity, phylogenetic relationships, and expression of the aluminum tolerance MATE1 gene in Secale species, Biol. Plant., 2018, vol. 62, no. 1, pp. 109–120.
51. Santos, E., Pinto-Carnide, O., Figueiras, A.M., Benito, C., and Matos, M., Biochemical, physiological and genetic analysis of aluminum tolerance of different rye species, Environ. Exp. Bot., 2019, vol. 162, pp. 87–94.
52. Li, G.R., Lang, T., Yang, E.N., Liu, C, and Yang, Z.J., Characterization and phylogenetic analysis of α-gliadin gene sequences reveals significant genomic divergence in Triticeae species, J. Genet., 2014, vol. 93, no. 3, pp. 725–731. https://doi.org/10.1007/s12041-014-0441-5
53. Jiang, Q.T., Zhao, Q.Z., Wang, X.Y, Wang, C.S., Zhao, S., Cao, X., Lan, X.J., Lu, Z.X., Zheng, Y.L., and Wei, Y.M., Characterization of x-type high-molecular-weight glutenin promoters (x-HGP) from different genomes in Triticeae,SpringerPlus, 2013, vol. 2, p. 152.
54. Petersen, G., Seberg, O., Aagesen, L., and Frederiksen, S., An empirical test of the treatment of indels during optimization alignment based on the phylogeny of the genus Secale (Poaceae).Mol. Phylogenet. Evol., 2004, vol. 30, pp. 733–742.
55. Del Pozo, J.C., Figueiras, A.M., Benito, C., and De la Pena, A., PCR derived molecular markers and phylogenetic relationships in the Secale genus. Biol. Plant., 1995, vol. 37, pp. 481–489.
56. Chikmawati, T., Miftahudin, and Gustafson, J.P., Rye (Secale cereale L.) and wheat (Triticum aestivum L.) simple sequence repeat variation within Secale spp. (Poaceae), Hayati J. Biosci., 2013, vol. 20, no. 4, pp. 163–170. https://doi.org/10.4308/hjb.20.4.163
57. Zhou, J., Yang, Z., Li, G., Liu, C., Tang, Z., Zhang, Y., and Ren, Z., Diversified chromosomal distribution of tandemly repeated sequences revealed evolutionary trends in Secale (Poaceae), Plant Syst. Evol., 2010, vol. 287, nos. 1–2, pp. 49–56.
58. Shang, H.Y., Wei, Y.M., Long, H., Yan, Z.H., and Zheng, Y.L., Identification of LMW glutenin-like genes from Secale sylvestre Host, Russ. J. Genet., 2005, vol. 41, no. 12, pp. 1372–1380.
59. Niwa, K. and Tsujimoto, H., 18S.26S ribosomal RNA genes are not in every case located on the B chromosomes in the rye genome, Plant Breed., 1992, vol. 109, no. 1, pp. 78–81.
60. Niwa, K. and Sakamoto, S., Detection of B chromosomes in rye collected from Pakistan and China, Hereditas, 1996, vol. 124, pp. 211–215.
61. Klemme, S., Banaei-Moghaddam, A.M., Macas, J., Wicker, T., Novák, P., and Houben, A., High-copy sequences reveal distinct evolution of the rye B chromosome, New Phytol., 2013, vol. 199, pp. 550–558. https://doi.org/10.1111/nph.12289
62. Khush, G.S. and Stebbins, G.L.,Cytogenetic and evolutionary studies in Secale. I. Some new data on the ancestry of S. cereale,Am. J. Bot., 1961, vol. 48, no. 8, pp. 723–730.
63. Mackiewicz-Karolczak, D. and Broda, Z., Ocena efektywności krzyżowań międzygatunkowych w rodzaju Secale [Estimation of the efficiency of interspecific crosses in genus Secale], Biul.IHAR, 2002, vol. 221, pp.73–82.
64. Grossheim, A.A., A new variety of wild mountain rye Secale vavilovii in Transcaucasia, Bull. Appl. Bot., 1924, vol. 13, pp. 461–482.
65. Meier, S., Kunzmann, R., and Zeller, F.J., Genetic variation in germplasm accessions of Secale vavilovii Grossh. Genet. Resour. Crop Evol., 1996, vol. 43, pp. 91–96.
66. Kuckuck, H., Distribution and variation of cereals in Iran. FAO Rep., 1956, no. 517, Rome, pp. 22.
67. Stutz, H.C., On the origin of cultivated rye, Am. J. Bot., 1972, vol. 59, no.1, pp. 59–70.
68. Van Heemert, C. and Sybenga, J., Identification of the three chromosomes involved in the translocations which structurally differentiate the genome of Secale cereale L. from those of Secale montanum Guss. and Secale vavilovii Grossh., Genetica, 1972, vol. 43, no. 3, pp. 387–393.
69. Kranz, R.A., Wildarten und primitivformen des roggens (Secale L.), Adv. Plant Breed.,1973, no.3, pp.60.
70. Bennett, M.D., Gustafson, J.P., and Smith, J.B., Variation in nuclear DNA in the genus Secale,Chromosoma, 1977, vol. 61, pp. 149–176.
71. Tan, B.H., Watson, I.A., and Luig, N.H., The transference from Secale vavilovii to Secale cereale of susceptibility to several special forms of Puccinia graminis,Z. Pflanzenz., 1977, vol. 78, no. 4, pp. 276–284.
72. Friedt, W., The use of Secale vavilovii in rye breeding, in Proc. Conf. Broadening Genet. Base Crops, July 3–7,1978, Zeven, A.C., Ed., Wageningen, the Netherlands, 1978, pp. 221–224.
73. Ćwiklińska, A., Broda, Z., and Bocianowski, J., Analiza porównawcza cech dzikich gatunkówrodzaju Secale L. w celu poszerzenia zmienności genetycznej przydatnej w hodowli [Comparative analysis of the features of wild species within the genus Secale for widening genetic variability to be utilized in breeding], Biul.IHAR, 2009, vol. 252, pp. 119–137.
74. Plarre, W., Breeding methodology for rye with resistance to sprouting, Cereal Res. Commun., 1980, vol. 8, pp. 265–274.
75. Schabarum, D. and Volk, W.,Vergleichende proteinchemische studien an früchten von wild-, primitive- und kulturformen der gattung Secale L., Z.Pflanzenz., 1983, vol. 91, pp. 104–110.
76. Molski, B.A., Luckzak, W., and Zych, J., Protein quantity and quality in rye collections and in agricultural production in Poland, in Eucarpia Meeting of the Cereal Section on Rye, Svalöf, 1985, pp. 491–523.
77. Mikołajczyk, S., Broda, Z., Mackiewicz, D., Weigt, D., Tomkowiak, A., and Bocianowski, J., Biometric characteristics of interspecific hybrids in the genus Secale,Biomet. Lett., 2014, vol. 51, no. 2, pp. 153–170. https://doi.org/10.2478/bile-2014-0011
78. Hammer, K., Breeding system and phylogenetic relationships in Secale L. Biol. Zent. Bl., 1990, vol. 109, pp. 45–50.
79. Schreiber, M., Himmelbach, A., Börner, A., and Mascher, M., Genetic diversity and relationship between domesticated rye and its wild relatives as revealed through genotyping-by-sequencing, Evol. Applic., 2019, vol. 12, pp. 66–77. https://doi.org/10.1111/eva.12624
80. Achrem, M., Rogalska, S.M., and Kalinka, A., Possible ancient origin of heterochromatic JNK sequences in chromosomes 2R of Secale vavilovii Grossh., J. Appl. Genet., 2010, vol. 51, no. 1, pp. 1–8.
81. Kalinka, A. and Achrem, M., Analysis of the flanking sequences of the heterochromatic JNK region in Secale vavilovii chromosomes, Biol. Plant., 2015, vol. 59, no. 4, pp. 637–644.
82. Achrem, M. and Kalinka, A., Tracking of intercalary DNA sequences integrated into tandem repeat arrays in rye Secale vavilovii, Acta Soc. Bot. Pol., 2017, vol. 86, no. 2, asbp. 3548.
83. Bauer, E., Schmutzer, T., Barilar, I., Mascher, M., et al., Towards a whole-genome sequence for rye (Secale cereale L.), The Plant J., 2017, vol. 89, no. 5, pp. 853–869. https://doi.org/10.1111/tpj.13436
84. Schneider, A., Rakszegi, M., Molnár-Láng, M., and Szakács, É., Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R), Theor. Appl. Genet., 2016, vol. 129, no. 5, pp. 1045–1059. https://doi.org/10.1007/s00122-016-2682-6
85. Kubiczek, R., Zuczak, W., and Molski, B., Protein resources of the wild Secale species. Kulturpflanze, 1981, vol. 29, pp. 159–167.
86. Davis, P. H., Ed., in Flora of Turkey and the Eastern Aegean Islands, Edinburgh: The University Press, 1985, vol. 9, pp. 256–257.
87. Yanchenko, K. V., Study of the possibility of introducing Secale montanum into field herbage stands in the Krasnyarsk forest steppe, Plant Breed. Abstr.,1984, vol. 58, p. 26.
88. Andersen, M.R., Depuit, E.J., Abernethy, R.H., and Kleinman, L.H., Value of mountain rye for suppression of annual bromegrasses on semiarid mined lands. J. Range Manage., 1992, vol. 45, pp. 345–351.
89. Andriyash, V. P., Breeding winter rye and the differentiation of varieties for resistance to root rots in the Poles’e area of the Ukrainian SSR, Plant Breed. Abstr., 1989, vol. 60, pp. 912.
90. Lapinski, M., Cytoplasmic-genetic type of male sterility in Secale montanum Guss. Wheat Inf. Serv., 1972, vol. 35, pp. 25–28.
91. Lapinski, M., Breeding and hybrid studies of the cytoplasmic pollen sterility system in rye, Plant Breed. Abstr., 1991, vol. 63, pp. 1073–1093.
92. Kotvics, G., Investigations on increasing the protein content of Secale cereale L., in Protein Growth by Plant Breeding, Bálint, A., Ed., Budapest: Akadémiai Kiadó, 1970, pp. 89–98.
93. Stutz, H.S., A cytogenetic analysis of the hybrid Secale cereale L. × S. montanum Guss. and its progeny, Genetics, 1957, vol. 42, pp. 199–221.
94. Akgün, I. and Tosun, M., Agricultural and cytological characteristics of M1 perennial rye (Secale montanum Guss.) as effected by the application of different doses of gamma rays, Pak. J. Biol. Sci., 2004, vol. 7, pp. 827–833.
95. Reimann-Philipp, R., Perennial spring rye as a crop alternative, J. Agr. Crop Sci., 1986, vol. 157, no. 4, pp. 281–285.
96. Oram, R.N., Secale montanum—a wider role in Australia? New Zeal. J. Agric. Res., 1996, vol. 39, pp. 629–633.
97. Gordon-Werner, E. and Dörffling, K., Morphological and physiological studies concerning the drought tolerance of the Secale cereale × Secale montanum cross Permontra, J. Agr. Crop Sci., 1988, vol. 160, no. 4, pp. 277–285.
98. Gordon-Werner, E. and Dörffling, K., Osmotic adjustment and stomatal characteristics of the Secale cereale × Secale montanum cross Permontra, J. Agr. Crop Sci., 1988, vol. 161, no. 1, pp. 30–39.
99. Reimann-Philipp, R. and Gordon-Werner, E., Investigation of cytological tests for improving the fertility of a tetraploid perennial spring rye (S. cereale × S. montanum). Z. Pflanzenz., 1984, vol. 92, pp. 198–207.
100. Kotvics, G., Krisztián, J., and Heszky, L., Perennial rye: a new forage crop for the world, registered in Hungary, Hung. Agric. Res., 2001, vol. 10, no. 2, pp. 4–5.
101. Weik, L., Kaul, H.P., Kübler, E., and Aufhammer, W., Grain yields of perennial grain crops in pure and mixed stands, J. Agr. Crop Sci., 2002, vol. 188, no. 5, pp. 342–349.
102. Cox, T.S., Bender, M., Picone, C., Van Tassel, D.L., Holland, J.B., Brummer, E.C., Zoeller, B.E., Paterson, A.H., and Jackson, W., Breeding perennial grain crops, Crit. Rev. Plant Sci., 2002, vol. 21, no. 2, pp. 59–91.
103. Füle, L., Hódos-Kotvics, G., Galli, Z., Ács, E., and Heszky, L., Grain quality and baking value of perennial rye (cv. ‘Perenne’) of interspecific origin (Secale cereale S. montanum), Cereal Res. Commun., 2005, vol. 33, no. 4, pp. 809–816. https://doi.org/10.1556/CRC.33.2005.2-3.152
104. Sun, M., Corke, H., Population genetics of colonising success of weedy rye in Northern California, Theor. Appl. Genet., 1992, vol. 83, pp. 321–329.
105. Barkworth, M.E., Secale, in Flora of North America North of Mexico, Barkworth, M.E., , Eds., New York: Oxford University Press, 2007, vol. 24, pp. 259–260.
106. Aastveit, K., Variation and selection for seed set in tetraploid rye, Hereditas, 1968, vol. 60, pp. 294 – 316.
107. Akgün, I. and Tosun, M., Seed set and some cytological characters in different generations of autotetraploid perennial rye (Secale montanum Guss), New Zeal. J. Agric. Res., 2007, vol. 50, pp. 339–346.
108. Gradskova, L.A. and Panina, E.B., A study of relationship between breeding and cytogenetic traits in tetraploid rye populations, Plant Breed. Abst., 1981, vol. 52, no. 2.
109. Akgün, İ., Tosun, M., Haliloğlu, K., and Aydin, M., Development of autotetraploid perennial rye (Secale montanum Guss.) and selection for seed set, Turk. J. Field Crops, 2011, vol. 16, no. 1, pp. 23–28.
110. Pretorius, Z.A., Bender, C.M., and Visser, B., The rusts of wild rye in South Africa, South Afr. J. Bot., 2015, vol. 96, pp. 94–98.
111. Boshoff, W.H.P., Bender, C.M., and Pretorius, Z.A., Reaction of South African rye, triticale and barley forage cultivars to stem and leaf rust, South Afr. J. Plant Soil, 2018, pp. 1–6. https://doi.org/10.1080/02571862.2018.1522381
112. Gustafson, J.P., Evans, E., and Josifek, K., Identification of chromosomes in Secale montanum and individual S. montanum chromosome additions to ‘Kharkov’ wheat by heterochromatin bands and chromosome morphology, Can. J. Genet. Cytol., 1976, vol. 18, pp. 339–343.
113. Miller, T.E., Alien Chromosome Additions and Substitutions, Ann. Rep. Plant Breed. Inst., Cambridge: Plant Breeding Institute, 1973.
114. Miller, T.E., The homoeologous relationship between the chromosomes of rye and wheat. Current status, Can. J. Genet. Cytol., 1984, vol. 26, pp. 578–589.
115. Makowska, B., Bakera, B., and Rakoczy-Trojanowska, M., The genetic background of benzoxazinoid biosynthesis in cereals, Acta Physiol. Plant., 2015, vol. 37, p. 176. https://doi.org/10.1007/s11738-015-1927-3
116. Petersen, G., Johansen, B., and Seberg, O., PCR and sequencing from a single pollen grain, Plant Mol. Biol., 1996, 31, pp. 189–191.
117. Ermishev, V.Yu., Naroditsky, B.S., and Khavkin, E.E., Putative MADS-Box retropseudogenes in rye (Secale L.), Russ. J. Plant Phys., 2002, vol. 49, no. 5, pp. 657–664.
118. Hu, L., Zeng, Z., Liu, C., Li, G., and Yang, Z., Isolation and chromosomal localization of new MITE-like sequences from Secale,Biologia, 2012, vol. 67, no. 1, pp. 126–131. https://doi.org/10.2478/s11756-011-0139-6
119. Jenabi, T., Saeidi, H., and Rahiminejad, M.R., Biodiversity of Secale strictum in Iran measured using microsatellites, Genet. Resour. Crop Evol., 2011, vol. 58, no. 4, pp. 497–505. https://doi.org/10.1007/s10722-010-9593-1
120. Shanjani, P.S., Jafari, A.A., and Calagari, M., Genetic diversity and differentiation of Secale strictum accessions based on phenotypic traits and seed storage protein profiles, J. Sci. Isl. Rep. Iran, 2014, vol. 25, no. 4, pp. 309–321.
121. Liu, C., Yang, Z.J., Li, G.R., Zeng, Z.X., Zhang, Y., Zhou, J.P., Liu, Z.H., and Ren, Z.L., Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background, Euphytica, 2008, vol. 159, nos. 1–2, pp. 249–258.
122. Jia, J., Yang, Z., Li, G., Liu, Ch., Lei, M., Zhang, T., Zhou, J., and Ren, Z., Isolation and chromosomal distribution of a novel Ty1-copia-like sequence from Secale, which enables identification of wheat–Secale africanum introgression lines, J. Appl. Genet., 2009, vol. 50, no. 1, pp. 25–28.
123. Yang, Z.J., Li, G.R., Jia, J.Q., Zeng, X., Lei, M.P., Zeng, Z.X., Zhang, T., and Ren, Z.L., Molecular cytogenetic characterization of wheat–Secale africanum amphiploids and derived introgression lines with stripe rust resistance, Euphytica, 2009, vol. 167, pp. 197–202. https://doi.org/10.1007/s10681-008-9861-8
124. Jia, J., Li, G., Liu, C., Zhou, J., and Yang, Z., New PCR based markers allowed to identify Secale chromatin in wheat–Secale africanum introgression lines, Front. Biol., 2010, vol. 5, no. 2, pp. 187–192. https://doi.org/10.1007/s11515-010-0036-3
125. Lei, M.P., Li, G.R., Liu, C., and Yang, Z.J., Characterization of wheat–Secale africanum introgression lines reveals evolutionary aspects of chromosome 1R in rye, Genome, 2012, vol. 55, pp. 765–774. https://doi.org/10.1139/g2012-062
126. Li, G., Gao, D., La, S., Wang, H., Li, J., He, W., Yang, E., and Yang, Z., Characterization of wheat–Secale africanum chromosome 5Ra derivatives carrying Secale specific genes for grain hardness, Planta, 2016, vol. 243, no. 5, pp. 1203–1212. https://doi.org/10.1007/s00425-016-2472-z
127. Montero, M., Sanz, J., and Jouve, N., Meiotic pairing and alpha-amylase phenotype in a 5B/5Rm Triticum aestivum–Secale montanum translocation line in common wheat. Theor. Appl. Genet., 1986, vol. 73, pp. 122–128.
128. Li, J., Gyawali, Y., Zhou, R., Stein, N., Nasuda, S., and Endo, T.R., Comparative study of the structure of chromosome 1R derived from Secale montanum and Secale cereale,Plant Breed., 2015, vol. 134, no. 6, pp. 675–683.
129. Li, G., Zhang, H., Zhou, L., Gao, D., Lei, M., Zhang, J., and Yang, Z., Molecular characterization of Sec2 loci in wheat–Secale africanum derivatives demonstrates genomic divergence of Secale species, Int. J. Mol. Sci., 2015, vol. 16, pp. 8324–8336. https://doi.org/10.3390/ijms16048324
130. Lukaszewski, A.J., Porter, D.R., Baker, C.A., Rybka, K., and Lapinski, B., Attempts to transfer Russian wheat aphid resistance from a rye chromosome in Russian triticales to wheat, Crop Sci., 2001, vol. 41, pp. 1743–1749.
131. Nkongolo, K.K., Haley, S.D., Kim, N.S., Michael, P., Fedak, G., Quick, J.S., and Peairs, F.B., Molecular cytogenetic and agronomic characterization of advanced generations of wheat × triticale hybrids resistant to Diuraphis noxia (Mordvilko): application of GISH and microsatellite markers, Genome, 2009, vol. 52, no. 4, pp. 353–360. https://doi.org/10.1139/G09-010