TSitologiya i Genetika 2020, vol. 54, no. 5, 12-20
Cytology and Genetics 2020, vol. 54, no. 5, 386–392, doi: https://www.doi.org/10.3103/S0095452720050035

The impact of transcriptional factors Znf1 and Sip4 on xylose alcoholic fermentation in recombinant strains of yeast Saccharomyces cerevisiae

Dzanajewa L.S., Ruchala J., Sibirny A.A., Dmytruk K.V.

  1. Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
  2. University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland

SUMMARY. In recent years the demand for technical ethanol has increased due to its use in the transportation sector. Xylose is the major five-carbon sugar obtained as a result of lignocellulose hydrolysis, however, an industrial producer of alcohol – S. cerevisiae yeast – ferments exclusively hexoses. Based on a recombinant strain capable of xylose metabolism, the derivatives with increased expression of the ZNF1 gene and deletion of the SIP4 gene, encoding transcription factors, were constructed. It was found that overexpression of ZNF1 gene did not affect the fermentation of glucose or xylose. The deletion of the SIP4 gene did not affect the fermentation of glucose, but resulted in a 29 % decrease in ethanol production during xylose fermentation as compared to the parental strain.

Keywords: transcription factors, S. cerevisiae, gene expression, xylose, alcoholic fermentation

TSitologiya i Genetika
2020, vol. 54, no. 5, 12-20

Current Issue
Cytology and Genetics
2020, vol. 54, no. 5, 386–392,
doi: 10.3103/S0095452720050035

Full text and supplemented materials


1. Dias De Oliveira, M.E., Burton, E., Vaughan, B.E., and Rykiel, E.J., Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint, BioScience, 2005, vol. 55, no. 7, pp. 593–602. https://doi.org/10.1641/0006-3568(2005)055[0593:EAFECD]2.0.CO;2

2. Sybirnyi, A., Bio-fuel ethanol of lignocellulose (vegetable biomass): achievements, problems, prospects, Visn. Nats. Akad. Nauk Ukr., 2006, no. 3. ISSN 0372-6436.

3. Scalcinati, G., Otero, J.M., Van Vleet, J.R., Jeffries, T.W., Olsson, L., and Nielsen, J., Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption, FEMS Yeast Res., 2012, vol. 12, no. 5, pp. 582–597. https://doi.org/10.1111/j.15671364.2012.00808.x

4. MacPherson, S., Larochelle, M., and Turcotte, B., A fungal family of transcriptional regulators: the zinc cluster croteins, Microbiol. Mol. Biol. Rev., 2006, vol. 70, no. 3, pp. 583–604. https://doi.org/10.1128/MMBR.00015-06

5. Tangsombatvichit, P., Semkiv, M.V., Sibirny, A.A., Jensen, L.T., Ratanakhanokchai, K., and Soontorngun, N., Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae,FEMS Yeast Res., 2015, vol. 15, no. 2, pii: fou002. https://doi.org/10.1093/femsyr/fou002

6. Vincent, O. and Carlson, M., Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes, EMBO J., 1998, vol. 17, no. 23, pp. 7002–7008. https://doi.org/10.1093/emboj/17.23.7002

7. Gancedo, J.M., Yeast carbon catabolite repression, Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 2, pp. 334–361.

8. Sambrook, J., Fritsh, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989.

9. Gietz, R.D. and Woods, R.A., Transformation of yeast by lithium acetate/single stranded carrier DNA/polyethylene glycol method, Methods Enzymol., 2002, vol. 350, pp. 87–96. https://doi.org/10.1016/S0076-6879(02)50957-5

10. Ferreira, R., Teixeira, P.G., Gossing, M., Davi,d, F., Siewers V., and Nielsen, J., Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols, Metab. Eng. Commun., 2018, vol. 6, pp. 22–27. https://doi.org/10.1016/j.meteno.2018.01.002

11. Wenning, L., Yu, T., David, F., Nielsen, J., and Siewers, V., Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae,Biotechnol. Bioeng., 2017, vol. 114, no. 5, pp. 1025–1035. https://doi.org/10.1002/bit.26220