TSitologiya i Genetika 2020, vol. 54, no. 5, 39-44
Cytology and Genetics 2020, vol. 54, no. 5, 408–412, doi: https://www.doi.org/10.3103/S0095452720050060

Effect of gene SFU1 on the riboflavin synthesis in flavinogenic yeast Candida famata

Petrovska Y., Lyzak O., Dmytruk K., Sibirny A.

  1. Institute of Cell Biology National Academy of Sciences of Ukraine, Drahomanov St., 14/16, Lviv, 79005, Ukraine
  2. Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
  3. University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland

SUMMARY. Riboflavin or vitamin B2 is a necessary component for all living organisms being the precursor of flavin coenzymes FMN (flavin mononucleotide) and FAD (flavin adenine dinucleotide) involved in numerous enzymatic reactions. Flavinogenic yeast Candida famata overproduces riboflavin under iron starvation; however, regulation of this process is poorly understood. Regulatory gene SEF1 encoding transcription activator has been identified. Its deletion blocks yeast ability to overproduce riboflavin under iron starvation. It is known that in the pathogenic flavinogenic yeast C. albicans, Sfu1 (GATA-type transcription factor) represses SEF1. Here we found that deletion of SFU1 gene in wild type C. famata leads to riboflavin oversynthesis.


TSitologiya i Genetika
2020, vol. 54, no. 5, 39-44

Current Issue
Cytology and Genetics
2020, vol. 54, no. 5, 408–412,
doi: 10.3103/S0095452720050060

Full text and supplemented materials


1. Abbas, C.A. and Sibirny, A.A., Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers, Microbiol. Mol. Biol. Rev., 2011, vol. 75, pp. 321–360. https://doi.org/10.1128/MMBR.00030-10

2. Lim, S.H., Choi, J.S., and Park, E.Y., Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis and Candida famate: an overview, Biotechnol. Bioproc. Eng., 2001, vol. 6, pp. 75–88. https://doi.org/10.1007/bf02931951

3. Dmytruk, K.V., Yatsyshyn, V.Y., Voronovsky, A.Y., Fedorovych, D.V., and Sibirny, A.A., Construction of riboflavin (vitamin B2) overproducers of the yeast Candida famata,Sci. Innovat., 2009, vol. 5, no. 6, pp. 70–74. https://doi.org/10.15407/scin5.06.070

4. Stahmann, K.-P., Revuelta, J.L., and Seulberger, H., Three biotechnical processes using Ashbya gossypii Candida famata or Bacillus subtilis compete with chemical riboflavin production, Appl. Microbiol. Biotechnol., 2000, vol. 53, pp. 509–516. https://doi.org/10.1007/s002530051649

5. Vandamme, E.J., Production of vitamins, coenzymes and related biochemicals by biotechnological processes, J. Chem. Technol. Biotechnol., 1992, vol. 53, pp. 313–327. https://doi.org/10.1002/jctb.280530402

6. Kato, T. and Park, E.Y., Riboflavin production by Ashbya gossypii, Biotechnol. Lett., 2012, vol. 34, pp. 611–618. https://doi.org/10.1007/s10529-011-0833-z

7. Schwechheimer, S.K., Park, E.Y., Revuelta, J.L., Becker, J., and Wittmann, C., Biotechnology of riboflavin, Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 2107–2119. https://doi.org/10.1007/s00253-015-7256-z

8. Burgess, C.M., Smid, E.J., and van Sinderen, D., Bacterial vitamin B2, B11 and B12 overproduction: an overview, Int. J. Food Microbiol., 2009, vol. 133, nos. 1–2, pp. 1–7. https://doi.org/10.1016/j.ijfoodmicro.2009.04.012

9. Dmytruk, K.V., Yatsyshyn, V.Y., Sybirna N.O., Fedorovych D.V., and Sibirny A.A. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production, Metab. Eng., 2011, vol. 13, no. 1, pp. 82–88. https://doi.org/10.1016/j.ymben.2010.10.005

10. Dmytruk, K.V. and Sibirny, A.A., Candida famata (Candida flareri), Yeast, 2012, vol. 29, no. 11, pp. 453–458. https://doi.org/10.1002/yea.2929

11. Dmytruk, K., Lyzak, O., Yatsyshyn, V., Kluz, M., Sibirny, V., Puchalski, C., and Sibirny, A., Construction and fed-batch cultivation of Candida famata with enhanced riboflmavin production, J. Biotechnol., 2014, vol. 172, pp. 11–17. https://doi.org/10.1016/j.biotec.2013.12.005

12. Dmytruk, K.V., Voronovsky, A.Y., and Sibirny, A.A., Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments, Curr. Genet., 2006, vol. 50, pp. 183–191. https://doi.org/10.1007/s00294-006-0083-0

13. Lan, C.Y., Rodante, G., Murillo, L.A., Jones, T., Davis, R.W., Dungal, J., Newport, G., and Agabian, N., Regulatory networks affected by iron availability in Candida albicans,Mol. Microbiol., 2004, vol. 53, pp. 1451–1469. https://doi.org/10.1111/j.1365-2958.2004.04214.x

14. Chen, C. and Noble, S.M., Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host, PLoS Pathog., 2012, vol. 8, no. 11. e1002956. https://doi.org/10.1371/journal.ppat.1002956

15. Voronovsky, A.A., Abbas, C.A., Fayura, L.R., Kshanovska, B.V., Dmytruk, K.V., Sybirna, K.A., and Sibirny, A.A., Development of a transformation system for the flavinogenic yeast Candida famata,FEMS Yeast Res., 2002, vol. 2, pp. 381–388. https://doi.org/10.1016/S1567-1356(02)00112-5

16. Sambrook, J., Fritsh, E.F., and Maniatis, T., Molecular Cloning: A LaboratoryManual second ed., Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989.

17. Chen, C. Pande, K., French, S.D., Tuch, B.B, and Noble, S.M., An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis, Cell Host Microbe, 2011, vol. 18, no. 2, pp. 118–135. https://doi.org/10.1016/j.chom.2011.07.005