TSitologiya i Genetika 2020, vol. 54, no. 5, 45-53
Cytology and Genetics 2020, vol. 54, no. 5, 413–419, doi: https://www.doi.org/10.3103/S0095452720050072

Cloning of genes SEF1 and TUP1 encoding transcriptional activator and global repressor in the flavinogenic yeast Meyerozyma (Candida, Pichia) Guilliermondii

Fedorovych D., Boretsky V., Pynyaha Y., Bohovych I., Boretsky Y., Sibirny A.

  1. Institute of Cell Biology NAS of Ukraine, Drahomanov St.,14/16, Lviv, 79005, Ukraine
  2. University of Nebraska-Lincoln 1400 R St., Lincoln, NE 68588, USA
  3. Lviv State University of Physical Culture, Tadeusha Kostiushko St, 11, Lviv,79000, Ukraine
  4. Rzeszow University, Zelverowicz St., 4, 35-601 Rzeszow, Poland

SUMMARY. Two Meyerozyma (Candida, Pichia) guilliermondii genes
coding for homologs of transcriptional factor Sef1p Can-dida famata and Tup1p Candida albicans were identified, cloned and deleted. Deletion of a homologue of Sef1p transcriptional factor in M.(P.) guilliermondii completely blocked over-synthesis of riboflavin under iron-deficient conditions.  Results of genetic complementation analysis suggest that previously reported rib83 mutants and newly constructed knock-out strains belong to the same complementation group and are defective in the same SEF1 gene. Inactivation of identified homolog of TUP1 gene in M.(P.) guilliermondii wild-type strain led to 1,5 folds increase of cellular iron content and 1,5 – 1,7 folds increase of riboflavin production. Introduction of a plasmid-borne copy of TUP1 gene did not restore metabolic defects of the riboflavin overproducing, iron accumulating mutant strain M.(P.) guilliermondii m3 that bears mutation hit1. Obtained results can suggest that both transcription factors Sef1р and Tup1p are involved in regulation both of iron acquisition and riboflavin biosynthesis by yeast belonging to CUG-clade. The molecular mechanism of action Tup1р on ri-boflavin biosynthesis in M.(P.) guilliermondii  remains to be deciphered.

Keywords: yeast, riboflavin, iron acquisition, transcriptional regulation

TSitologiya i Genetika
2020, vol. 54, no. 5, 45-53

Current Issue
Cytology and Genetics
2020, vol. 54, no. 5, 413–419,
doi: 10.3103/S0095452720050072

Full text and supplemented materials


1. Sibirny, A. and Boretsky, Y., Pichia guilliermondii, in Yeast Biotechnology: Diversity and Applications, Satyanarayana, T. and Kunze, G., Eds., Springer Science, 2009, pp. 113–134. https://doi.org/10.1007/978-1-4020-8292-4_6

2. Zviagil’skaia, R.A., Fedorovich, D.V., and Shavlovskiĭ, G.M., Respiratory system of Pichia guilliermondii yeasts with different levels of flavinogenesis, Mikrobiologiia, 1978, vol. 47, no. 6, pp. 975–984. PMID: 745565

3. Abbas, C.A. and Sibirny, A.A., Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers, Microbiol. Mol. Biol. Rev., 2011, vol. 75, no. 2, pp. 321–360. https://doi.org/10.1128/MMBR.00030-10

4. Sibirny, A.A., Fedorovych, D.V., Boretsky, Y.R., and Voronovsky, A.Y., Microbial Synthesis of Flavins, Kyiv: Naukova Dumka, 2006.

5. Fedorovich, D., Protchenko, O., and Lesuisse, E., Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are coregulated processes, Biometals, 1999, vol. 12, no. 4, pp. 295–300. https://doi.org/10.1023/a:1009298530145

6. Stenchuk, N.N., Kutsiaba, V.I., Kshanovskaia, B.V., and Fedorovich, D.V., Effect of rib83 mutation on riboflavin biosynthesis and iron assimilation in Pichia guilliermondii,Mikrobiologiia, 2001, vol. 70, no. 6, pp. 753–758. PMID: 11785131

7. Philpott, C.C. and Protchenko, O., Response to iron deprivation in Saccharomyces cerevisiae, Eukaryot. Cell, 2008, vol. 7, no. 1, pp. 20–27. https://doi.org/10.1128/EC.00354-07

8. Dmytruk, K.V., Voronovsky, A.A., and Sibirny, A.A., Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments, Curr. Genet., 2006, vol. 50, no. 3, pp. 183–191. https://doi.org/10.1007/s00294-006-0083-0

9. Hsu, P.C., Yang, C.Y., and Lan, C.Y., Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence, Eucaryot. Cell, 2011, vol. 10, no. 5, pp. 207–225. https://doi.org/10.1128/EC.00158-10

10. Linde, J., Wilson, D., Hube, B., and Guthke, R., Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC Syst Biol., 2010, vol. 4, no. 4, pp. 148–162. https://doi.org/10.1186/1752-0509-4-148

11. Chen, C., Pande, K., French, S.D., Tuch, B.B., and Noble, S.M., An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis, Cell Host Microbe, 2011, vol. 10, no. 2, pp. 118–135. https://doi.org/10.1016/j.chom.2011.07.005

12. Knight, S., Lesuisse, E., Stearman, R., Klausner, R., and Dancis, A., Reductive iron uptake by Candida albicans: role of copper, iron and TUP1 regulator, Microbiology, 2002, vol. 148, no. 1, pp. 29–40. https://doi.org/10.1099/00221287-148-1-29

13. Murad, A.M., d’Enfert, C., Gaillardin, C., Tournu, H., Tekaia, F., Talibi, D., Marechal, D., Marchais, V., Cottin, J., and Brown, A.J., Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1, Mol. Microbiol., 2001, vol. 42, no. 4, pp. 981–993. https://doi.org/10.1046/j.1365-2958.2001.02713.x

14. García-Sánchez, S., Mavor, A., Russell, C., Argimon, S., Dennison, P., Enjalbert, B., and Brown, A., Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans,Mol. Biol. Cell., 2005, vol. 16, no. 6, pp. 2913–2925. https://doi.org/10.1091/mbc.e05-01-0071

15. Tartas, A., Zarkadas, C., Palaiomylitou, M., Gounalaki, N., Tzamarias, D., and Vlass,i, M., Ssn6-Tup1 global transcriptional co-repressor: role of the N-terminal glutamine-rich region of Ssn6, PLoS One, 2017, vol. 12, no. 10. e0186363. https://doi.org/10.1371/journal.pone.0186363

16. Pynyaha, Y.V., Boretsky, Y.R., Fedorovych, D.V., Fayura, L.R., Levkiv, A.I., Ubiyvovk, V.M., Protchenko, O.V., Philpott, C.C., and Sibirny, A.A., Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation, Biometals, 2009, vol. 22, no. 6, pp. 1051–1061. https://doi.org/10.1007/s10534-009-9256-x

17. Boretsky, Y.R., Protchenko, O.V., Prokopiv, T.M, Mukalov, I.O., Fedorovych, D.V., and Sibirny, A.A., Mutations affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast Pichia guilliermondii,J. Basic Microbiol., 2007, vol. 47, no. 5, pp. 371–377. https://doi.org/10.1002/jobm.200610279

18. Sambrook, J. and Russell, D.W., Molecular Cloning, A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 2001. ISBN-10 0-87969-577-3.

19. Boretsky, Y.R., Pynyaha, Y.V., Boretsky, V.Y., Kutsyaba, V.I., Protchenko, O.V., Philpott, C.C., and Sibirny, A.A., Development of a transformation system for gene knock-out in the flavinogenic yeast Pichia guilliermondii,J. Microbiol. Methods, 2007, vol. 70, no. 1, pp. 13–19. https://doi.org/10.1016/j.mimet.2007.03.004

20. Shavlovskii, G., Logvinenko, E., and Zakalskii, A., Purification and properties of GTP cyclohydrolase II of the yeast Pichia guilliermondii,Biokhimiya, 1983, vol. 48, no. 5, pp. 837–843. PMID: .6871289

21. Stadler, J.A. and Schweyen, R.J., The Yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance, J. Biol. Chem., 2002, vol. 277, no. 42, pp. 39649–39654. https://doi.org/10.1074/jbc.M203924200

22. Lin, X., Yu, A.Q., Zhang, C.Y., Pi, L., Bai, X.-W., and Xiao, D.G., Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains, Microb. Cell Fact., 2017, vol. 16, no. 1, pp.194–206. https://doi.org/10.1186/s12934-017-0806-6

23. Boretsky, Y.R., Kapustyak, K.Y., Fayura, L.R., Stasyk, O.V., Stenchuk, M.M., Bobak, Y.P., Drobot, L.B., and Sibirny, A.A., Positive selection of mutants defective in transcriptional repression of riboflavin synthesis by iron in the flavinogenic yeast Pichia guilliermondii,FEMS Yeast Res., 2005, vol. 5, no. 9, pp. 829–837. https://doi.org/10.1016/j.femsyr.2005.03.007

24. Fedorovych, D., Boretsky, Y., Prokopiv, T., Grabek-Leiko, D., and Sybirny, A., Cobalt as a dangerous environmental pollutant, in Living Organisms and Bioanalytical Approaches for Detoxification and Monitoring of Toxic Compounds, Sibirny, A., Fedorovych, D., Gonczar, M., and Grabek-Leiko, D., Eds., Rzeszow University, pp. 33–40.

25. Prokopiv, T.M., Fedorovych, D.V., Boretsky, Y.R., and Sibirn,y, A.A., Oversynthesis of riboflavin in the yeast Pichia guilliermondii is accompanied by reduced catalase and superoxide dismutases activities, Curr. Microbiol., 2013, vol. 66, no. 1, pp. 79–87. https://doi.org/10.1007/s00284-012-0242-0

26. Wong, K.H. and Struhl, K., The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein, Genes Dev., 2011, vol. 25, no. 23, pp. 2525–2539. https://doi.org/10.1101/gad.179275.111.47