TSitologiya i Genetika 2020, vol. 54, no. 5, 97-107
Cytology and Genetics 2020, vol. 54, no. 5, 456–464, doi: https://www.doi.org/10.3103/S0095452720050114

The effect of photobiomodulation therapy on oxidative stress progressing in blood leukocytes of streptozotocin-induced diabetic rats

Karmash O.I., Liuta M.Ya., Korobov A.M., Sybirna N.O.

  1. Department of Biochemistry, Ivan Franko National University of Lviv, Lviv, Ukraine
  2. Laboratory of Quantum Biology and Quantum Medicine, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

SUMMARY. Oxidative stress is one of the main reasons of severe complications development during diabetes mellitus (DM). Modern pharmacological drugs are able to lower blood glucose level but seldom possess antioxidant properties. There is data about broad specter of biological activity of photobiomodulation therapy (PBM therapy). Potential ability to decrease blood glucose concentration and antioxidant activity give this type of therapy a perspective application in treatment of DM and its complications. The effect of PBM therapy on antioxidant protection system of blood leukocytes in rats with streptozotocin-induced DM was studied. Established that irradiation of rats with DM cause the increasing of superoxide dismutase activity and normalization of oxidative stress markers (TBA-positive products, oxidatively modified proteins and advanced glycation end products).

Keywords: diabetes mellitus; photobiomodulation therapy; blood leukocytes; oxidative stress; antioxidant system

TSitologiya i Genetika
2020, vol. 54, no. 5, 97-107

Current Issue
Cytology and Genetics
2020, vol. 54, no. 5, 456–464,
doi: 10.3103/S0095452720050114

Full text and supplemented materials

References

1. Elbe, H., Vardi, N., Esrefoglu, M., Ates, B., Yologlu, S., and Taskapan, C., Amelioration of strep-tozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats, Hum. Exp. Toxicol., 2015, vol. 34, no. 1, pp. 1–14.https://doi.org/10.1177/0960327114531995

2. Evan, D.H., Abrahamse, H., Efficacy of three laser wavelengths for in vitro wound healing, Photodermat. Photoimm. Photomed., 2008, vol. 24 no. 4, pp. 199–210. https://doi.org/10.1111/j.1600-0781.2008.00362.x

3. Chung, H., Dai, T., Sharma, S.K., Huang, Y.Y., Carroll, J.D., and Hamblin, M.R., The nuts and bolts of low-level laser (light) therapy, Ann. Biomed. Eng., 2012, vol. 40, no. 2, pp. 516–533. https://doi.org/10.1007/s10439-011-0454-7

4. Karmash, O.I., Liuta, M.Y., Yefimenko, N.V., Korobov, A.M., and Sybirna, N.O., The influence of low-level light radiation of red spectrum diapason on glycemic profile and physicochemical characteristics of rat’s erythrocytes in diabetes mellitus, Fiziol. Zh., 2018, vol. 64, no. 6, pp. 68– 76. https://doi.org/10.15407/fz64.06.068

5. Denadai, A.S., Aydos, R.D., Silva, I.S., Olmedo, L., de Senna Cardoso, B.M., da Silva, B.A.K., and de Carvalho, P.T.C., Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds, Exp. Ther. Oncol., 2017, vol. 11, no. 2, pp. 85–89.

6. Korolyuk, M.A., Ivanova, I.H., and Maiorova, I.H., Method for the determination of catalase activity, Lab. Delo, 1988, no. 1, pp. 16–19.

7. Hnatush, A.R., Drel, V.R., Yalaneckyy, A.Ya., Mizin, V.I., Zagoruyko, V.A., Gerzhykova, V.G., and Sybirna, N.O., The antioxidant effect of natural polyphenolic complexes of grape wine in the rat retina under streptozotocin-induced diabetes mellitus., Biol. Stud., 2011, vol. 5, no. 2, pp. 61–72. https://doi.org/10.30970/sbi.0502.156

8. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

9. Meshchyshyn, I.F., Method for the determination of proteins oxidative modification, Bukov. Med. Visn., 1999, no. 1, pp. 196–205.

10. Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C., Nguyen-Khoa, T., Nguyen, A.T., Zingraff, J., Jungers, P., and Descamps-Latscha, B., Advanced oxidation protein products as a novel marker of oxidative stress in uremia, Kidney Int., 1996, vol. 49, no. 5, pp. 1304–1313. https://doi.org/10.1038/ki.1996.186

11. Kalousová, M., Skrha, J., and Zima, T., Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus, Physiol. Res., 2002, vol. 51, no. 6, pp. 597–604.

12. Swathi, P. and Kilari, E., A review on methods of estimation of advanced glycation end products, World J. Pharm. Res., 2015, vol. 4, no. 1, pp. 689–699.

13. Timirbulatov, R.A. and Selesnev, E.I., Method for increasing the free-radical oxidation of lipid-containing blood components and its diagnostical meaning, Lab. Delo, 1981, no. 4, pp. 209–211.

14. De Marchi, T., Leal Junior, E.C., Bortoli, C, Tomazoni, S.S., Lopes-Martins, R.A., and Salvador, M., Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress, Lasers Med. Sci., 2012, vol. 27, no. 1, pp. 231–236. https://doi.org/10.1007/s10103-011-0955-5

15. Guaraldo, S.A., Serra, A.J., Amadio, E.M., Antonio, E.L., Silva, F., Portes, LA., Tucci, P.J.F., Leal-Junior, E.C.P., and de Tarso Camillo de Carvalho, P., The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise, Lasers Med. Sci., 2016, vol. 31, no. 5, pp. 833–840. https://doi.org/10.1007/s10103-016-1882-2

16. Dos Santos, S.A., Dos Santos Vieira, M.A., Simxes, M.C.B., Serra, A.J., Leal-Junior, E.C., and de Carvalho, P.T.C., Photobiomodulation therapy associated with treadmill training in the oxidative stress in a collagen-induced arthritis model, Lasers Med. Sci., 2017, vol. 32, no. 5, pp. 1071–1079. https://doi.org/10.1007/s10103-017-2209-7

17. Ibuki, F.K., Simxes, A., Nicolau, J., and Nogueira, F.N., Laser irradiation affects enzymatic antioxidant system of streptozotocin-induced diabetic rats, Lasers Med. Sci., 2013, vol. 28, no. 3, pp. 911–918. https://doi.org/10.1007/s10103-012-1173-5

18. Lim, J., Ali, Z.M., Sanders, R.A., Snyder, A.C., Eells, J.T., Henshel, D.S., Watkins, J.B., Effects of low-level light therapy on hepatic antioxidant defense in acute and chronic diabetic rats, Biochem. Mol. Toxicol., 2009, vol. 23, no. 1, pp. 1–8. https://doi.org/10.1002/jbt.20257

19. Lim, J., Sanders, R.A., Snyder, A.C., Eells, J.T., Henshel, D.S., and Watkins, J.B., Effects of low-level light therapy on streptozotocin-induced diabetic kidney, J. Photochem. Photobiol. B., 2010, vol. 99, no. 2, pp. 105–110. https://doi.org/10.1016/j.jphoto-biol.2010.03.00

20. Hamblin, M.R. and Demidova, T.N., Mechanisms of low-level light therapy, Proc. SPIE, 2006, vol. 6140, no. 1, pp. 1–12. https://doi.org/10.1117/12.646294

21. Karu, T., Is it time to consider photobiomodulation as a drug equivalent?, Photomed. Laser Surg., 2013, vol. 31, no. 5, pp. 189–191. https://doi.org/10.1089/pho.2013.3510

22. Chen, C.H., Wang, C.Z., Wang, Y.H., Liao, W.T., Chen, Y.J., Kuo, C.H., Kuo, H.F., and Hung, C.H., Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification, Mediat. Inflamm., 2014, vol. 2014, pp. 1– 13. https://doi.org/10.1155/2014/625048

23. Drel, V.R. and Sybirna, N., Protective effects of polyphenolics in red wine on diabetes associated oxidative/nitrative stress in streptozotocin-diabetic rats, Cell Biol. Int., 2010, vol. 34, no. 12, pp. 1147–1153. https://doi.org/10.1042/CBI20100201

24. Lima, P.L.V., Pereira, C.V., Nissanka, N., Arguello, T., Gavini, G., Maranduba, C.M.D.C., Diaz, F., and Moraes, C.T., Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase, J. Photochem. Photobiol. B, 2019, vol. 194, pp. 71–75. https://doi.org/10.1016/j.jphoto-biol.2019.03.015

25. Amaroli, A., Ferrando, S., and Benedicenti, S., Photobiomodulation affects key cellular pathways of all life-forms: considerations on old and new laser light targets and the calcium issue, Photochem. Photobiol., 2019, vol. 95, no. 1, pp. 455–459. https://doi.org/10.1111/php.13032

26. Martin, K.R. and Barrett, J.C., Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity, Hum. Exp. Toxicol., 2002, vol. 21, no. 2, pp. 71–75. https://doi.org/10.1191/0960327102ht213oa

27. Sperandio, F.F., Giudice, F.S., Corria, L., Pinto, D.S. Jr., Hamblin, M.R., and de Sousa, S.C, Low-level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway, J. Biophotonics, 2013, vol. 6, no. 10, pp. 839–847. https://doi.org/10.1002/jbio.201300015

28. Batinic-Haberle, I., Tovmasyan, A., Roberts, E.R., Vujaskovic, Z., Leong, K.W., and Spasojevic, I., SOD therapeutics: latest insights into their structure–activity relationships and impact on the cellular redox-based signaling pathways, Antioxid. Red. Signal., 2014, vol. 20, no. 15, pp. 2372–415. https://doi.org/10.1089/ars.2012.5147

29. Ellis, E.M., Reactive carbonyls and oxidative stress: potential for therapeutic intervention, Pharmacol. Ther., 2007, vol. 115, no. 1, pp. 13–24. https://doi.org/10.1016/j.pharmthera.2007.03.015

30. Qian, W., Zhao-Ming, Z., Ying, P., Ji-Huan, Z., Shuai, Z., Si-Yuan, Z., and Jian-Ting, C., Advanced oxidation protein products as a novel marker of oxidative stress in postmenopausal osteoporosis, Med. Sci. Monit., 2015, vol. 21, pp. 2428– 2432. https://doi.org/10.12659/MSM.894347

31. Bochi, G.V., Torbitz, V.D., de Campos, L.P., Sangoi, M.B., Fernandes, N.F., Gomes, P., Moretto, M.B., Barbisan, F., da Cruz, I.B., and Moresco, R.N., In vitro oxidation of collagen promotes the formation of advanced oxidation protein products and the activation of human neutrophils, Inflammation, 2016, vol. 39, no. 2, pp. 916–927. https://doi.org/10.1007/s10753-016-0325-3

32. Merhi, Z., Kandaraki, E.A., and Diamanti-Kandarakis, E., Implications and future perspectives of AGEs in PCOS pathophysiology, Trends Endocrinol. Metab., 2019, vol. 30, no. 3, pp. 150–162. https://doi.org/10.1016/j.tem.2019.01.005

33. Deluyker, D., Evens, L., and Bito, V., Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs, Amino Acids, 2017, vol. 49, no. 9, pp. 1535–1541. https://doi.org/10.1007/s00726-017-2464-8

34. Huang, L., Jiang, X., Gong, L., Xing, D., Photoactivation of Akt1/GSK3β isoform-specific signaling axis promotes pancreatic β-cell regeneration, J. Cell Biochem., 2015, vol. 116, no. 8, pp. 1741–1754. https://doi.org/10.1002/jcb.25133

35. Vrhovac, I., Breljak, D., and Sabolic, I., Glucose transporters in the mammalian blood cells, Periodic. Biologor., 2014, vol. 116, no. 2, pp. 131–138.

36. Kipmen-Korgun, D., Bilmen-Sarikcioglu, S., Altunbas, H., Demir, R., and Korgun, E.T., Type-2 diabetes down-regulates glucose transporter proteins and genes of the human blood leukocytes, Scand. J. Clin. Lab. Invest., 2009, vol. 69, no. 3, pp. 350–358. https://doi.org/10.1080/00365510802632163

37. Simpson, I.A., Dwyer, D., Malide, D., Moley, K.H., Travis, A., and Vannucci, S.J., The facilitative glucose transporter GLUT3: 20 years of distinction, Am. J. Physiol. Endocrinol. Metab., 2008, vol. 295, no. 2, pp. 242–253. https://doi.org/10.1152/ajpendo. 90388.2008

38. Ueda-Wakagi, M., Hayashibara, K., Nagano, T., Ikeda, M., Yuan, S., Ueda, S., Shirai, Y., Yoshida, K.I., and Ashida, H., Epigallocatechin gallate induces GLUT4 translocation in skeletal muscle through both PI3K- and AMPK-dependent pathways, Food Funct., 2018, vol. 9, no. 8, pp. 4223–4233. https://doi.org/10.1039/C8FO00807H

39. Krook, A., Wallberg-Henriksson, H., and Zierath, J.R., Sending the signal: molecular mechanisms regulating glucose uptake, Med. Sci. Sports Exerc., 2004, vol. 36, no. 7, pp. 1212–1217. https://doi.org/10.1249/01.MSS.0000132387.25853.3B

40. Thomas, M.C., Forbes, J.M., and Cooper, M.E., Advanced glycation end products and diabetic nephropathy, Am. J. Ther., 2005, vol. 12, no. 6, pp. 562–572. https://doi.org/10.1097/01.ASN.00000-77413.41276.17

41. Dzydzan, O., Bila, I., Kucharska, A.Z., Brodyak, I., and Sybirna, N., Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus, Food Funct., 2019, pp. 1–14. https://doi.org/10.1039/C9FO00515C