TSitologiya i Genetika 2020, vol. 54, no. 5, 3-11
Cytology and Genetics 2020, vol. 54, no. 5, 379–385, doi: https://www.doi.org/10.3103/S0095452720050023

SEF1 and VMA1 genes regulate riboflavin biosynthesis in the flavinogenic yeast Candida famata

Andreieva Y., Lyzak O., Liu Wen, Kang Yingqian, Dmytruk K., Sibirny A.

  1. Institute of Cell Biology National Academy of Sciences of Ukraine, Drahomanov St, 14/16, Lviv, 79005, Ukraine
  2. Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
  3. Guizhou Medical University, Guiyang, Guizhou 550025 China
  4. University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland

SUMMARY. Riboflavin (vitamin B2) is an important component of the diet of living organisms due to its serving as a precursor of flavin coenzymes FMN (flavin mononucleotide) and FAD (flavin adenine dinucleotide) involved in numerous enzymatic reactions. It is known that flavinogenic yeast C. famata is able of riboflavin oversynthesis under condition of iron starvation, but the regulation of this process remains unknown. It was shown that the deletion of SEF1 gene (encoding transcription activator) blocked the ability of riboflavin oversynthesis under iron-limiting conditions. It was determined that SEF1 promoters of other flavinogenic yeasts (Candida albicans and Candida tropicalis), fused with SEF1 ORF of C. famata can restore the oversynthesis of riboflavin in sef1Δ mutant. The disruption of VMA1 gene (coding for vacuolar ATPase subunit A) led to oversynthesis of riboflavin in C. famata in iron complete medium.

Keywords: riboflavin, Candida famata, VMA1, SEF1, yeast

TSitologiya i Genetika
2020, vol. 54, no. 5, 3-11

Current Issue
Cytology and Genetics
2020, vol. 54, no. 5, 379–385,
doi: 10.3103/S0095452720050023

Full text and supplemented materials

References

1. Abbas, C.A. and Sibirny, A.A., Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers, Microbiol. Mol. Biol. Rev., 2011, vol. 75, no. 2, pp. 321–360. https://doi.org/10.1128/MMBR.00030-10

2. Lim, S.H., Choi, J.S., and Park, E.Y., Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: an overview, Biotechnol. Bioproc. Eng., 2001, vol. 6, pp. 75–88. https://doi.org/10.1007/bf02931951

3. Stahmann, K.-P., Revuelta, J.L., and Seulberger, H., Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production, Appl. Microbiol. Biotechnol., 2000, vol. 53, pp. 509–516. https://doi.org/10.1007/s002530051649

4. Vandamme, E.J., Production of vitamins, coenzymes and related biochemicals by biotechnological processes, J. Chem. Technol. Biotechnol., 1992, vol. 53, pp. 313–327. https://doi.org/10.1002/jctb.280530402

5. Kato, T. and, Park E.Y., Riboflavin production by Ashbya gossypii,Biotechnol. Lett., 2012, vol. 34, pp. 611–618. https://doi.org/10.1007/s10529-011-0833-z

6. Schwechheimer, S.K., Park, E.Y., Revuelta, J.L., Becker, J., and Wittmann, C., Biotechnology of riboflavin, Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 5, pp. 2107–2119. https://doi.org/10.1007/s00253-015-7256-z

7. Burgess C.M., Smid E.J. and van Sinderen D. Bacterial vitamin B2, B11 and B12 overproduction: an overview, Int. J. Food Microbiol., 2009, vol. 133, nos. 1–2, pp. 1–7. https://doi.org/10.1016/j.ijfoodmicro.2009.04.012

8. Chen C., Noble S.M. Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host, PLoS Pathog., 2012, vol. 8, no. 11, e1002956. https://doi.org/10.1371/journal.ppat.1002956

9. Dmytruk, K.V., Yatsyshyn, V.Y., Sybirna, N.O., Fedorovych, D.V., and Sibirny, A.A., Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production, Metabol. Engin., 2011, vol. 13, no. 1, pp. 82–88. https://doi.org/10.1016/j.ymben.2010.10.005

10. Dmytruk, K., Lyzak, O., Yatsyshyn, V., Kluz, M., Sibirny, V., Puchalski, C., and Sibirny, A., Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. J. Biotechnol., 2014, vol. 172, pp. 11–17. https://doi.org/10.1016/j.jbiotec.2013.12.005

11. Voronovsky, A.Y., Abbas, C.A., Dmytruk, K.V., Ishchuk, O.P., Kshanovska, B.V. Sybirna, K.A., Gaillardin, C., and Sibirny, A.A., Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis, Yeast, 2004, vol. 21, pp. 1307–1316. https://doi.org/10.1002/yea.1182

12. Boretsky, Y.R., Pynyaha, Y.V., Boretsky, V.Y., Fedorovych, D.V., Fayura, L.R., Protchenko, O., Philpott, C.C., and Sibirny, A.A., Identification of the genes affecting the regulation of riboflavin synthesis in the flavinogenic yeast Pichia guilliermondii using insertion mutagenesis, FEMS Yeast Res., 2011, vol. 11, pp. 307–314. https://doi.org/10.1111/j.1567-1364.2011.00720.x

13. Forster C., Santos M. A., Ruffert, S., Kramer R., and Revuelta J.L., Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii,J. Biol. Chem., 1999, vol. 274, pp. 9442–9448. https://doi.org/10.1074/jbc.274.14.9442

14. Voronovsky A.A., Abbas C.A., Fayura L.R., Kshanovska B.V., Dmytruk K.V., Sybirna, K.A., and Sibirny A.A. Development of a transformation system for the flavinogenic yeast Candida famata,FEMS Yeast Res., 2002, vol. 2, pp. 381–388. https://doi.org/10.1016/S1567-1356(02)00112-5

15. Sambrook J., Fritsh E.F., and Maniatis T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.

16. Millerioux, Y., Clastre, M., Simkin, A.J., Courdavault, V., Marais, E., Sibirny, A.A., Noël, T., Crèche, J., Giglioli-Guivarc’h, N., and Papon, N., Drug-resistant cassettes for the efficient transformation of Candida guilliermondii wild-type strains, FEMS Yeast Res., 2001, vol. 11, no. 6, pp. 457–463. https://doi.org/10.1111/j.1567-1364.2011.00731.x

17. Dmytruk K.V., Voronovsky A.Y., and Sibirny A.A. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments, Curr. Genet., 2006, vol. 50, pp. 183–191. https://doi.org/10.1007/s00294-006-0083-0

18. Dmytruk, K.V., Ruchala, J., Fedorovych, D.V., Ostapiv, R.D., and Sibirny, A.A., Modulation of the purine pathway for riboflavin production in flavinogenic recombinant strain of the yeast Cand. famata,Biotechnol. J., 2020, vol. 22. https://doi.org/10.1002/biot.201900468

19. Patcharanan, A., Riboflavin production by Candida tropicalis isolated from seawater, Sci. Res. Essays, 2013, vol. 8, no. 1, pp. 43–47. https://doi.org/10.5897/SRE12.603

20. Mateos, L., Jimenez, A., and Revuelta, J.L., Purine biosynthesis, riboflavin production, and trophic–phase span are controlled by a Myb–related transcription factor in the fungus Ashbya gossypii,Appl. Environ. Microbiol., 2006, vol. 72, pp. 5052–5060. https://doi.org/10.1128/AEM.00424-06