TSitologiya i Genetika 2020, vol. 54, no. 2, 3-9
Cytology and Genetics 2020, vol. 54, no. 2, 91–95, doi: https://www.doi.org/10.3103/S0095452720020097

Variation of storage proteins in crimean populations of Dasypyrum villosum

Kozub N., Sozinova O., Blume Ya.

  1. Institute of Plant Protection of the National Academy of Agrarian Sciences of Ukraine, 03022, 33 Vasylkivska St., Kyiv
  2. SI «Insitute of Food Biotechnology and Genomics of NAS of Ukraine», 04123, 2a Osypovskogo St., Kyiv

SUMMARY. The objective of the investigation was to study variation of storage proteins in two Crimean populations of Dasypyrum villosum from Beregove of the Bakhchisarai region and from the Tauric Chersonese National Re-serve (Sevastopol). Sodium dodecyl sulfate (SDS) poly-acrylamide gel electrophoresis of seed storage proteins was performed to analyze diversity of high-molecular-weight glutenin subunits encoded by the Glu-V1 locus, as well as ω-gliadin variants on SDS-electrophoregrams encoded by Gli-V1. In the two Crimean populations of D. villosum, eight alleles at the Glu-V1 locus and four Gli-V1 alleles encoding ω -gliadin were identified. The Crimean populations of D. villosum differed sig-nificantly in the frequencies of the alleles a, b, and c at the Glu-V1 locus and both had a high frequency of the null-allele (k). The populations showed significant differences in frequencies of ω-gliadin variants on SDS-electrophoregrams encoded by Gli-V1, and gene diversity with respect to this marker was higher in the population of Beregove than that in the Chersonese population. ω-Gliadins on SDS-electrophoregrams are a convenient marker system for analysis of D. villosum populations, which can be employed simultaneously with analysis of high-molecular-weight glutenin subunits.


TSitologiya i Genetika
2020, vol. 54, no. 2, 3-9

Current Issue
Cytology and Genetics
2020, vol. 54, no. 2, 91–95,
doi: 10.3103/S0095452720020097

Full text and supplemented materials


1. Hajjar, R. and Hodgkin, T., The use of wild relatives in crop improvement: a survey of development over last 20 years, Euphytica, 2007, vol. 156, pp. 1–13. https://doi.org/10.1007/s10681-007-9363-0

2. Gill, B.S., Friebe, B.R., and White, F.F., Alien introgressions represent a rich source of genes for improvement, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 19, pp. 7657–7658. https://doi.org/10.1073/pnas.1104845108

3. De Pace, C., Vaccino, P., Cionini, P.G., Pasquini, M., Bizzarri, M., and Qualset, C.O., Dasypyrum, in Wild Crop Relatives: Genomic and Breeding Resources. Cereals, Kole C., Ed., Berlin: Springer-Verlag, 2011, pp. 185–292. https://doi.org/10.1007/978-3-642-14228-4

4. Shewry, P.R. and Halford, N.G., Cereal seed storage proteins: structures, properties and role in grain utilization, J. Exp. Bot., 2002, vol. 53, no. 370, pp. 947–9. https://doi.org/10.1093/jexbot/53.370.947

5. Chen, P.D., Qi, L.L., Zhou, B., Zhang, S.Z., and Liu, D.J., Development and molecular cytogenetic analysis of wheat–Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew, Theor. Appl. Genet., 1995, vol. 91, pp. 1125–1128. https://doi.org/10.1007/BF00223930

6. Xing, L., Hu, P., Liu, J., Witek, K., Zhou, S., Xu, J., Zhou, W., Gao, L., Huang, Z., Zhang, R., Wang, X., Chen, P., Wang, H., Jones, J.D.G., Karafiátová, M., Vrána, J., Bartoš, J., Doležel, J., Tian, Y., Wu, Y., and Cao, A., Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat, Mol. Plant., 2018, vol. 11, no. 6, pp. 874–878. https://doi.org/10.1016/j.molp.2018.02.013

7. Yildirim, A., Jones, S.S., Murray, T.D., and Line, R.F., Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens, Plant Dis., 2000, vol. 84, pp. 40–44. https://doi.org/10.1094/PDIS.2000.84.1.40

8. Murray, T.D., De La Pena, R.C., Yildirim, A., and Jones, S.S., A new source of resistance to Pseudocercosporella herpotrichoides, cause of eyespot disease of wheat, located on chromosome 4V of Dasypyrum villosum,Plant Breed., 1994, vol. 113, pp. 281–286. https://doi.org/10.1111/j.1439-0523.1994.tb00737.x

9. Shewry, P.R., Parmar, S., and Pappin, D.J.C., Characterization and genetic control of the prolamins of Haynaldia villosa: relationship to cultivated species of the Triticeae (rye, wheat, and barley), Biochem. Genet., 1987, vol. 25, pp. 309–325. https://doi.org/10.1007/bf00499323

10. Blanco, A., Resta, P., Simeone, R., Parmar, S., Shewry, P.R., Sabelli, P., and Lafiandra, D., Chromosomal location of seed storage protein genes in the genome of Dasypvrum villosum (L.) Candargy, Theor. Appl. Genet. 1991, vol. 82, pp. 358–362. https://doi.org/10.1007/BF02190623

11. De Pace, C., Snidaro, D., Ciaffi, M., Vittori, D., Ciofo, A., Cenci, A., Tanzarella, O.A., Qualset, C.O., and Scarascia Mugnozza, G.T., Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality, Euphytica, 2001, vol. 117, pp. 67–75. https://doi.rg/10.1023/A:1004095705460

12. Vaccino, P., Banfi, R., Corbellini, M., and De Pace, C., Improving the wheat genetic diversity for end-use grain quality by introgression of chromatin from the wheat wild relative Dasypyrum villosum,Crop Sci., 2010, vol. 50, pp. 528–540. https://doi.org/10.2135/cropsci2009.04.0179

13. Zhao, W., Qi, L., Gao, X., Zhang, G., Dong, J., Chen, Q., Friebe, B., and Gill, B.S., Development and characterization of two new Triticum aestivum–Dasypyrum villosum Robertsonian translocation lines T1DS 1V#3L and their effect on grain quality, Euphytica, 2010, vol. 175, pp. 343–350. https://doi.org/10.1007/s10681-010-0177-0

14. Ruiqi, Z., Mingyri, Z., Xiue, W., and Peidu, C., Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on breadmaking quality of common wheat, Theor. Appl. Genet., 2014, vol. 127, pp. 523–533. https://doi.org/10.1007/s00122-013-2244-0

15. Zhong, G.Y. and Qualset C.O. Allelic diversity of high molecular-weight glutenin protein subunits in natural populations of Dasypyrum villosum (L.) Candargy, Theor. Appl. Genet., 1993, vol. 86, pp. 851–858. doihttps://doi.org/10.1007/BF00212612

16. Zhong, G.Y. and Qualset, C.O., Quantitative genetic diversity and conservation strategies for an allogamous annual species, Dasypyrum villosum (L.) Candargy (Poaceae), Theor. Appl. Genet., 1995, vol. 91, pp. 1064–1073. https://doi.org/10.1007/BF00223920

17. Tsvelev, N.N., Grasses of the USSR, Leningrad: Nauka, 1997.

18. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685. https://doi.org/10.1038/227680a0

19. Payne, P. and Lawrence, G., Catalogue of alleles for the complex gene loci. Glu-A1, Glu-B1, Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat, Cereal Res. Commun., 1983, vol. 11, no. 1, pp. 29–34.

20. Nei, M., Analysis of gene diversity in subdivided populations, Proc. Natl. Acad. Sci. U. S. A., 1973, vol. 70, pp. 3321–332. https://doi.org/10.1073/pnas.70.12.3321

21. Kozub, N.A., Sozinov, I.A., Kopus’, M.M., Kolyeba, O.P., and Koleyeba, O.Yu., Identification of gliadin blocks on SDS-electrophoregrams using near-isogenic lines for gliadin loci, Tsitol. Genet., 1994, vol. 28, no. 2, pp. 25–30.

22. Ribeiro, M., Carvalho, C., Carnide, V., Guedes-Pinto, H., and Igrejas, G., Towards allelic diversity in the storage proteins of old and currently growing and hexaploid wheats in Portugal, Genet. Resour. Crop Evol., 2011, vol. 58, pp. 1051–1073. https://doi.org/10.1007/s10722-010-9642-9

23. Nieto-Taladriz, M., Branlard, G., and Dardevet, M., Polymorphism of omega-gliadins in wheat as revealed by the two-step APAGE/SDS-PAGE technique, Theor. Appl. Genet., 1994, vol. 87, pp. 1001–1005. https://doi.org/10.1007/BF00225795

24. Igrejas, G., Guedes-Pinto, H., Carnide, V., and Branland, G., Seed storage protein diversity in triticale varieties grown in Portugal, Plant Breed., 1999, vol. 118, pp. 303–306. https://doi.org/10.1046/j.1439-0523.1999.00379.x