|
|||
![]()
|
![]() Main page Contacts Themes Archive ![]() Themes Subscription Information to authors Editorial board Mobile version In Ukrainian Export citations UNIMARC BibTeX RIS | ![]() |
Antineoplastic activity in vitro of 2-amino-5-benzylthiazole derivative in complex with nanoscale polymeric carriers
SUMMARY. The main problems of modern cancer chemotherapy are the low efficiency and selectivity of anticancer drugs, the development of multi-drug resistance, and low solubility in water. The polymeric nanoscale carriers are widely used to improve the targeted delivery of drugs and to increase their solubility. Earlier, we found that the newly synthesized thiazole derivative (N-(5-benzyl-1,3-thiazol-2-yl) -3,5-dimethyl-1-benzofuran-2-carboxamide, BF1) possessed toxicity towards some tumor line cells. The aim of our work was to investigate the action of BF1 complexed with the polymeric carriers, containing polyethylene glycol (PEG). The investigated complexes exhibited higher cytotoxicity towards specific tumor cell lines compared with the effects of the thiazole derivative or/and doxorubicin (positive control). Ñomplexes 4, 14 and 8, 18 were the most toxic for HepG2 human hepatocarcinoma cells and C6 rat glioma cells. Complex 6 demonstrated high toxicity towards T98G human glioblastoma cells and HL-60 human promyelocytic leukemia cells. Thus, complexes 4, 14 based on the poly(VEP-cî-GMA)-graft-mPEG, complex 6 based on the poly(PEGÌÀ), and complexes 8, 18 based on the poly(PEGMA-co-DMM) selectively enhanced the cytotoxic action of the thiazole derivative BF1 delivered to tumor cells. Key words: nanoscale polymeric carriers, polyethylene glycol, thiazole derivative, cytotoxic action, antitumor activity, hepatocarcinoma, glioma, leukemia
Tsitologiya i Genetika 2021, vol. 55, no. 1, pp. 23-32
E-mail: nataliyafiniuk
References1. Braun, D., Cherdron, H., Rehahn, M., et al., Polymer Synthesis: Theory and Practice. Fundamentals, Methods, Experiments, Berlin: Springer, 2013. 2. Chen, D., Pan, X., Xie, F., et al., Codelivery of doxorubicin and elacridar to target both liver cancer cells and stem cells by polylactide-co-glycolide/d-alpha-tocopherol polyethylene glycol 1000 succinate nanoparticles, Int. J. Nanomed., 2018.https://doi.org/10.2147/IJN.S181928 3. Crompton, T.R., Practical Polymer Analysis, Boston: Springer, 1993. 4. Dos Santos, T.A., Silva, A.C., Silva, E.B., et al., Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-thiazoles in Jurkat and HT-29 cells, Biomed. Pharmacother., 2016. https://doi.org/10.1016/j.biopha.2016.05.038 5. Feng, R., Zhu, W., Teng, F., et al., Poly(ethylene glycol) amphiphilic copolymer for anticancer drugs delivery, Anticancer Agents Med. Chem., 2015. https://doi.org/10.2174/1871520614666141124102347 6. Finiuk, N.S., Hreniuh, V.P., Ostapiuk, Yu.V., et al., Antineoplastic activity of novel thiazole derivatives, Biopolym. Cell, 2017. https://doi.org/10.7124/bc.00094B 7. Francuskiewicz, F., Polymer Fractionation, Berlin: Springer, 1994. 8. Han, J., Zhao, D., Li, D., et al., Polymer-based nanomaterials and applications for vaccines and drugs, Polymers, 2018. https://doi.org/10.3390/polym10010031 9. Heffeter, P., Riabtseva, A., Senkiv, Y., et al., Nano-formulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019, J. Biomed. Nanotechnol., 2014. https://doi.org/10.1166/jbn.2014.1763 10. Jain, S., Pattnaik, S., Pathak, K., et al., Anticancer potential of thiazole derivatives: a retrospective review, Mini Rev. Med. Chem., 2018. https://doi.org/10.2174/1389557517666171123211321 11. Khan, N., Afaq, F., and Mukhtar, H., Cancer chemoprevention through dietary antioxidants: progress and promise, Antioxid. Redox Signal., 2008. https://doi.org/10.1089/ars.2007.1740 12. Kobylinska, L., Patereha, I., Finiuk, N., et al., Comb-like PEG-containing polymeric composition as low toxic drug nanocarriers, Cancer Nanotechnol., 2018. https://doi.org/10.1186/s12645-018-0045-5 13. Li, M.H., Yang, P., Yang, T., et al., A novel water-soluble benzothiazole derivative BD926 triggers ROS-mediated B lymphoma cell apoptosis via mitochondrial and endoplasmic reticulum signaling pathways, Int. J. Oncol., 2016. https://doi.org/10.3892/ijo.2016.3684 14. Mitina, N.Y., Riabtseva, A.O., Garamus, V.M., et al., Morphology of the micelles formed by a comb-like PEG-containing copolymer loaded with antitumor substances with different water solubilities, Ukr. J. Phys., 2020. https://doi.org/10.15407/ujpe65.8.670 15. Mohammad, A. and Dexi, L., Organ-based drug delivery, J. Drug. Target, 2018. https://doi.org/10.1080/1061186X.2018.1437919 16. Mohareb, R.M., Abdallah, A.M., and Ahmed, E.A., Synthesis and cytotoxicity evaluation of thiazole derivatives obtained from 2-amino-4,5,6,7-tetrahydro-benzo[b]thiophene-3-carbonitrile, Acta Pharm., 2017. https://doi.org/10.1515/acph-2017-0040 17. Nath Roy, D., Goswami, R., and Pal, A., Nanomaterial and toxicity: what can proteomics tell us about the nanotoxicology?, Xenobiotica, 2017. https://doi.org/10.1080/00-498254.2016.1205762 18. Paiuk, O.L., Mitina, N.Ye., Riabtseva, A.O., et al., Structure and colloidal-chemical characteristics of polymeric surface active substances based on polyethylene-glycolcontaining macromeres, Vopr. Khim. Khim. Tekhnol., 2018. https://doi.org/10.32434/0321-4095-2018-121-6-63-71 19. Riabtseva, A., Mitina, N., Boiko, N., et al., Structural and colloidal-chemical characteristics of nanosized drug delivery systems based on pegylated comb-like carriers, Chem. Chem. Technol., 2012. https://doi.org/10.23939/chcht06.03.291 20. Roy, P.S. and Saikia, B.J., Cancer and cure: a critical analysis, Indian. J. Cancer, 2016. https://doi.org/10.4103/0019-509X.200658 21. Saleh, T. and Shojaosadati, S.A., Multifunctional nano-particles for cancer immunotherapy, Hum. Vaccin. Immun., 2016. https://doi.org/10.1080/21645515.2016.1147635 22. Steyermark, A., Quantitative Organic Microanalysis, New York: Academic, 1961. 23. Turov, K.V., Barvinchenko, V.M., Krupska, T.V., et al., Antiradical properties of thiazole derivatives. The effect on the metabolic activity of yeast, Biotechnology, 2012, vol. 5, no. 3, pp. 75–83. 24. Voronov, S.A., Kiselyov, E.M., Minko, S.S., et al., Structure and reactivity of peroxide monomers, J. Polym. Sci. Pol. Chem., 1996. https://doi.org/10.1002/(SICI)1099-0518(19960915)34:12<2507::AID POLA24>3.0.CO;2-B 25. Wang, L., Du, J., Zhou, Y., et al., Safety of nanosuspensions in drug delivery, Nanomedicine, 2017. https://doi.org/10.1016/j.nano.2016.08.007 26. Zdvizhkov, Y. and Bura, M., Particular qualities of application of polyethylene glycol-based polymeric carrier for drug delivery to the goal target, Visn. Lviv Univ., Ser. Biol., 2014, vol. 64, pp. 3–20. 27. Zhang, J., Li, S., and Li, X., Polymeric nano-assemblies as emerging delivery carriers for therapeutic applications: a review of recent patents, Rec. Pat. Nanotechnol., 2009. https://doi.org/10.2174/187221009789177803 28. Zhao, K., Li, D., Shi, C., Biodegradable polymeric nanoparticles as the delivery carrier for drug, Curr. Drug. Deliv., 2016. https://doi.org/10.2174/156720181304160521004609 |
|
|||
Coded & Designed by Volodymyr Duplij | Modified 03.10.23 |