TSitologiya i Genetika 2021, vol. 55, no. 3, 76-77
Cytology and Genetics 2021, vol. 55, no. 3, 270–273, doi: https://www.doi.org/10.3103/S0095452721030087

Complete mitochondrial genome of Bubo bubo (Aves, Strigiformes, Strigidae), a national protected wildlife bird in China

Zhu-Mei Ren, Yu-Jie Xu

  • School of Life Science, Shanxi University, Taiyuan, China

We sequenced the complete mitochondrial genome (mitogenome) of Bubo bubo by the shotgun genome skimming methods. The mitogenome of B. bubo is 18,956 bp in length with a base composition of 29.6 % A, 22.5 % T, 33.8 % C and 14.1 % G, and consists of 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and two non-coding control regions (CRs). All the protein-coding genes begin with the typical ATG codon except ND3 and ND5, which initiate with ATA. Seven of the 13 PCGs terminate with the codon TAA, and three (ND2, ND4 and COX3) of the remainder end with a single T. Whereas, ND1 and COX1 terminate with a codon AGG and ND6 stops with a codon TAG. The ML phylogenetic trees based on 13 protein-coding genes indicated that Bubo species formed a monophyletic group which is sister to the genus Strix within the same family Strigidae.

Keywords: Bubo bubo; Strigidae; Mitochondrial genome; Phylogeny

TSitologiya i Genetika
2021, vol. 55, no. 3, 76-77

Current Issue
Cytology and Genetics
2021, vol. 55, no. 3, 270–273,
doi: 10.3103/S0095452721030087

Full text and supplemented materials


1. Akbulut, Y., Demiraslan, Y., Aslan, K., et al., The macroanatomy of the sacral plexus and its nerves in Eurasian Eagle Owls (Bubo bubo), Anat. Histol. Embryol., 2016, vol. 45, no. 5, pp. 367–372.

2. Bankevich, A., Nurk, S., Antipov, D., et al., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol., 2012, vol. 19, no. 5, pp. 455–477.

3. Barusic, S., Tutis, V., Cikovic, D., et al., The eagle owl Bubo bubo (Aves: Strigidae) in the Eastern Adriatic (Croatia): the study case of a high-density insular population, Ital. J. Zool., 2016, vol. 83, no. 2, pp. 275–281.

4. Butchart, S., Symes, A., and Ashpole, J., Bubo bubo, The IUCN Red List of Threatened Species version 2017-3, International Union for Conservation of Nature, 2017.

5. Kang, H., Ding, P., and Li, B., COI sequence variations and phylogenetic relationships among 27 species of Strigidae Birds, Chin. J. Wildl., 2016, vol. 37, no. 4, pp. 351–356.

6. Kang, H., Li, B., Ma, X., et al., Evolutionary progression of mitochondrial gene rearrangements and phylogenetic relationships in Strigidae (Strigiformes), Gene, 2018, vol. 674, pp. 8–14.

7. Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, pp. 772–780.

8. Leon-Ortega, M., Delgado, M.M., Martinez, J.E., et al., Factors affecting survival in Mediterranean populations of the Eurasian Eagle Owl, Eur. J. Wildl. Res., 2016, vol. 62, vol. 343–351.

9. Lohse, M., Drechsel, O., Kahlau, S., et al., Organellar genome DRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets, Nucleic Acids Res., 2013, vol. 41, pp. W575–W581.

10. Ortego, J. and Espada, F., Ecological factors influencing disease risk in Eagle Owls Bubo bubo, IBIS, 2007, vol. 49, pp. 386–395.

11. Ortega, M.L., Franco, M.J., Martinez, J.E., et al., Factors influencing territorial occupancy and reproductive success in a Eurasian Eagle-owl (Bubo bubo) population, PLoS One, 2017, vol. 12, no. 4. e0175597.

12. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 3, no. 9, pp. 1312–1313.

13. Tian, H.J., Ji, J.W., Yang, S., et al., Complete mitochondrial genome of Eagle Owl (Bubo bubo, Strigiformes; Strigidae) from China, Mitochondrial DNA, 2014, vol. 27, no. 2, pp. 1455–1456.

14. Voous, K.H., Owls of the Northern Hemisphere, London: Collins, 1988.

15. Zimmer, E.A. and Wen, J., Using nuclear gene data for plant phylogenetics: progress and prospects II, Next-gen approaches, J. Syst. Evol., 2015, vol. 53, pp. 371–379.