Karyotype study and microsatellites pattern in the genome of Rana nigrovittata were studied, with the aim to provide a standard karyotype, chromosome marker and the distribution of repetitive DNA elements, informative knowledge of cytogenetics and evolutionary events. Here, we analyzed the karyotype structure and the distribution of repetitive DNA sequence in this species using conventional banding and Fluorescence in situ hybridization techniques. The ten specimens (five males and five females) were collected from Phitsanulok province, Thailand. Mitotic metaphases were prepared from the bone marrows by the standard protocol. The result showed that R. nigrovittata had the diploid chromosome number of 2n = 26 and the fundamental number (NF) were 52 in both males and females. The karyotypes compose of six large metacentric, four large submetacentric, two medium metacentric, two medium submetacentric and 12 small submetacentric chromosomes. No sex related chromosome heteromorphism was observed in male (XY) or female (ZW) of this species. The NOR was observed in subcentromeric region on chromosome no 11. The Cpositive heterochromatin blocks are mainly distributed in the centromere of most chromosomes, while some additionally in paracentromeric and telomeric regions. The large heterochromatic blocks were found on chromosome no 6. Some of repetitive elements were scattered while some were specific in the karyotype. The combine of conventional banding and molecular cytogenetics provide information for a cytogenetic determination of the examined species.
Keywords: Rana nigrovittata, karyotype, microsatellites, chromosome
Full text and supplemented materials
References
1. Beccari, N., Le Nombre des chromosomes dans les cellules genetales de Bufo viridis, CR. Assoc. Anat., 1926, vol. 21, pp. 29–31.
2. Birstein, V.J., Localization of NORs in karyotypes of four Rana species, Genetica, 1984, vol. 64, pp. 149–154. https://doi.org/10.1007/BF00115338
3. Blommers-Schlösser, R.M.A., Cytotaxonomy of the Ranidae, Rhacophoridae, Hyperoliidae (Anura) from Madagascar with a note on the karyotype of two amphibians of the Seychelles, Genetica, 1978, vol. 48, pp. 23–40. https://doi.org/10.1007/BF00125283
4. Chan-Ard, T., Grossmann, W., Gumprecht, A., et al., Amphibians and Reptiles of Peninsular Malaysia and Thailand (An Illustrated Checklist), Wuerselen, Germany: Bushmaster Publications, 1999.
5. Chaiyasut, K., Cytogenetics and Cytotaxonomy of the Family Zephyranthes, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 1989.
6. Cioffi, M.B.P. and Bertollo, L.A.C., Chromosomal distribution and evolution of repetitive DNAs in fish, in Repetitive DNAs Genome Dynamics, Garrido, R., Ed., Basel: Karger, 2012, vol. 7, pp. 197–221. https://doi.org/10.1159/000337950
7. Frost, D.R., Ed., Amphibian Species of the World: A Taxonomic and Geographical Reference, Lawrence, Kansas: Allen Press, 1985.
8. Guillemin, C., Karyotypes de Rana temporaria (L.) et de Rana dalmatina (Bonaparte), Chromosoma, 1967, vol. 21, pp. 189–197. https://doi.org/10.1007/BF00343644
9. Heppich, S., Hybridogenesis in Rana esculenta: C-band karyotypes of Rana ridibunda, Rana lessonae and Rana esculenta, Z. Zool. Syst. Evol. Forsch., 1978, vol. 16, pp. 27–39. https://doi.org/10.1111/j.1439-0469.1978.tb00918.x
10. Heppich, S. and Tunner, H.G., Chromosomal constitution and C-banding in homotypic Rana esculenta crosses, Mitt. Zool. Mus. Berlin., 1979, vol. 55, pp. 111–114. https://doi.org/10.1007/BF00273874
11. Hills, D.M. and Green, D.M., Evolutionary changes of heterogametic sex in the phylogenetics history of amphibians, J. Evol. Biol., 1990, vol. 3, pp. 49–64. https://doi.org/10.1046/j.1420-9101.1990.3010049.x
12. Howell, W.M. and Black, D.A., Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method, Experientia, 1980, vol. 36, pp. 1014–1015. https://doi.org/10.1007/BF01953855
13. Iizuka, K., Constitutive heterochromatin and nucleolus organizer regions in Japanese brown frogs, Rana japonica and Rana ornativentris, Jpn. J. Herpetol., 1989, vol. 13, pp. 15–20.
14. Joshy, H.S.S., Kuramoto, M., Sreepada, K.S., et al., Karyotypic Variations in Three Indian Species of the Genus Rana (Anura: Ranidae) from the Western Ghats, India, Cytologia, 2006, vol. 71, no. 1, pp. 63–68. https://doi.org/10.1508/cytologia.71.63
15. Khonsue, W., and Thirakhupt, K., A checklist of the amphibians in Thailand, Nat. Hist. J. Chulalongkorn Univ., 2001, vol. 1, pp. 69–82.
16. Kuramoto, M., Karyotypes of the six species of frogs native to the Ryukyu islands, Caryologia, 1972, vol. 25, no. 4, pp. 547–559. https://doi.org/10.1080/00087114.1972.10796509
17. Kuramoto, M., Karyotypes of several frogs from Korea, Taiwan and the Philippines, Experientia, 1979, vol. 39, pp. 826–828. https://doi.org/10.1007/BF01978594
18. Kuramoto, M., Karyotypes of several frogs from Korea, Taiwan and the Philippines, Experientia, 1980, vol. 36, pp. 826–828. https://doi.org/10.1007/BF01978594
19. Kuramoto, M., Karyological studies on some Philippine frogs, in Current Herpetology in East Asia, Matsui, M., Hidika, T., and Goris, R.C., Eds., Kyoto: Herpetology Society of Japan, 1989, pp. 115–121.
20. Kuramoto, M., A list of chromosome numbers of anuran amphibians, Bull. Fukuoka Univ. Educ., 1990, vol. 39, pp. 83–127.
21. Kuramoto, M. and Yong, H.-S., Karyotypes from several frog species from peninsular Malaya, Herpetologica, 1992, vol. 28, no. 4, pp. 434–438.
22. Liu, W. and Zan, R., A special karyotype in the genus Rana—an investigation of the karyotype, C-banding and Ag-stained NORs of Rana phrynodes Boulenger, Acta Genet. Sin., 1984, vol. 11, pp. 52–60. https://doi.org/10.3897/CompCytogen.v8i4.7623
23. Matsui, M., Nishikawa, K., Khonsue, W., et al., Allozymic variation in Rana nigrovittata (Amphibia: Anura) within Thailand with special reference to the taxonomic status of R. mortenseni, Nat. Hist. J. Chulalong. Univ., 2001, vol. 1, no. 1, pp. 15–22.
24. Matsui, M., Hidetoshi, O., Michael, W.L., et al., Cytotaxonomic Studies of Three Ranid Species (Amphibia: Anura) from Hong Kong, Jpn. J. Herpetol., 1995, vol. 16, no. 1, pp. 12–18.https://doi.org/10.5358/hsj1972.16.1_12
25. Miura, I., Sex chromosome differentiation in the Japanese brown frog, Rana japonica. Sex-related heteromorphism of the distribution pattern of constitutive heterochromatin in chromosome no. 4 of the Wakuya population, Zool. Sci., 1994, vol. 11, pp. 797–806.
26. Odierna, G., Vences, M., Aprea, G., et al., Chromosome data for Malagasy poison frogs (Amphibia: Ranidae: Mantella) and their bearing on the taxonomy and phylogeny, Zool. Sci., 2001, vol. 18, no. 4, pp. 505–514. https://doi.org/10.2108/zsj.18.505
27. Pinkel, D., Straume, T., and Gray, J., Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization, Proc. Natl. Acad. Sci. U. S. A., 1986, vol. 83, no. 9, pp. 2934–2938. https://doi.org/10.1073/pnas.83.9.2934
28. Popov, P. and Dimitrov, B., Karyotype study of Rana camerani and comparisons with the other 26-chromosome European brown frog species (Amphibia, Anura), Cytobios., 1999, vol. 97, pp. 13–22.
29. Sangpakdee, W., Phimphan, S., Tengjaroenkul, B., et al, Cytogenetic study of three microhylid species (Anura, Microhylidae) from Thailand, Cytologia, 2017, vol. 82, no. 1, spec. iss., pp. 67–74. https://doi.org/10.1508/cytologia.82.67
30. Seto, T., Cytogenetic studies in lower vertebrates II. Karyological studies of several species of frogs (Ranidae), Cytologia, 1965, vol. 30, pp. 437–446. https://doi.org/10.1508/cytologia.30.437
31. Schmid, M., Chromosome banding in Amphibia II. Constitutive heterochromatin and nucleolus organizer regions in Ranidae, Microhylidae and Rhacophoridae, Chromosoma, 1978, vol. 68, pp. 131–148. https://doi.org/10.1007/BF00287145
32. Schmid, M., Chromosome banding in Amphibia IV. Differentiation GC- and AT-rich chromosome regions in Anura, Chromosoma, 1980, vol. 77, no. 1, pp. 215–234. https://doi.org/10.1007/BF00292043
33. Schmid, M., Steinlein, C., Freiedl, R., et al., Chromosome banding in Amphibia. XV. Two types of Y chromosome heterochromatin hypervariability in Gastrotheca pseustes (Anura, Hylidae), Chromosoma, 1990, vol. 99, pp. 413–423.
34. Shi, H.L., Zhang, C., Wu, M., et al., A study on the karyotype, C-banding and Ag-NORs in Rana nigromaculata, Hereditas, 2006, vol. 28, pp. 533–539.
35. Singh, A.K. and Banerjee, R., Chromosomal diversity of Indian mammals, amphibians and reptiles, Rec. Zool. Surv. India, 2004, vol. 102 (parts 3–4), pp. 127–138.
36. Spasić-Bošković, O., Tanić, N., Blagojević, J., et al., Comparative cytogenetic analysis of European brown frogs: Rana temporaria, R. dalmatina and R. graeca, Cytologia, 1997, vol. 50, no. 2, pp. 139–149. https://doi.org/10.1080/00087114.1997.10797393
37. Stohler, R., Cytologische Untersuchungen an den Keimdrusen der mittel europaischen Kroten (Bufo viridis Laur., B. calamita Laur. and B. vulgaris Laur.), Z. Zellforsch., 1927, vol, 7, pp. 400–475. https://doi.org/10.1007/BF00372490
38. Supaprom, T., Cytogenetics of Amphibians in Thailand, Ph.D. Dissertation, Mahidol University, 2003.
39. Supaprom, T., Chantree, P., and Palasarn, W., Cytogenetics and cytotaxonomy of localized Amphibians in Northeastern Thailand, Research Project, Ubonratchathani University, 1999.
40. Supaprom, T., Baimai, V., Karyotypes of ten species of Ranid frogs (Anura: Ranidae) from Thailand, Amphibia–Reptilia, 2004, vol. 25, no. 1, pp. 104–111.
41. Sumner, A.T., A simple technique for demonstrating centromeric heterochromatin, Exp. Cell. Res., 1972, vol. 75, no. 1, pp. 304–306. https://doi.org/10.1016/0014-4827(72)90558-7
42. Tautz, D. and Renz, M., Simple sequences are ubiquitous repetitive components of eukaryotic genomes, Nucleic Acids Res., 1984, vol. 12, no. 10, pp. 4127–4138. https://doi.org/10.1093/nar/12.10.4127