|
|||
![]()
|
![]() Main page Contacts Themes Archive ![]() Themes Subscription Information to authors Editorial board Mobile version In Ukrainian Export citations UNIMARC BibTeX RIS | ![]() |
Temperature stress response of althaea officinalis «hairy» root lines carrying human interferon α2b gene
SUMMARY. «Hairy» roots, obtained by genetic transformation of plants using soil phytopathogenic bacteria Agrobacterium rhizogenes, are valuable producers of important se-condary metabolites with medicinal properties and a Key words: Agrobacterium rhizogenes, Althaea officinalis, “hair” roots, temperature stress, flavonoids, antioxidant activity
Tsitologiya i Genetika 2021, vol. 55, no. 3, pp. 3-9
E-mail: duplijv
References1. Agati, G., Azzarello, E., Pollastri, S., and Tattini, M., Flavonoids as antioxidants in plants: location and functional significance, Plant Sci., 2012, vol. 196, pp. 67–76. 2. Boo, H.O., Chon, S.U., and Lee, S.Y., Effects of temperature and plant growth regulators on anthocyanin synthesis and phenylalanine ammonia-lyase activity in chicory (Cichorium intybus L.), J. Hortic. Sci. Biotechnol., 2006, vol. 81, pp. 478–482. https://doi.org/10.1080/14620316.200.11512091 3. Choi, S., Kwon, Y.R., Hossain, M.A., et al., A mutation in ELA1, an age-dependent negative regulator of PAP1/MYB75, causes UV- and cold stress-tolerance in Arabidopsis thaliana seedlings, Plant Sci., 2009, vol. 176, pp. 678– 686. https://doi.org/10.1016/j.plantsci.2009.02.010 4. Fini, A., Brunetti, C., Di Ferdinando, M., et al., Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants, Plant Signal. Behav., 2011, vol. 6, pp. 709–711. https://doi.org/10.4161/psb.6.5.15069 5. Havryliuk, O., Matvieieva, N., Tashyrev, O., and Yastremskaya, L., Influence of cold stress on growth and flavonoids accumulation in Artemisia tilesii “hairy” root culture, in Agrobiodiversity for Improving Nutrition, Health and Life Quality, 2017, pp 163–167. 6. Matvieieva, N., Drobot, K., Duplij, V., et al., Flavonoid content and antioxidant activity of Artemisia vulgaris L. “hairy” roots, Prep. Biochem. Biotechnol., 2019, vol. 49, pp. 82–87. https://doi.org/10.1080/10826068.2018.1536994 7. Matvieieva, N.A., Generation of Tragopogon porrifolius and Althaea officinalis “hairy” roots using Agrobacterium rhizogenes, Bull. Vavilov Soc. Genet. Breeders Ukr., 2012, vol. 10, pp. 262–268. 8. Matvieieva, N.A., Kishchenko, O.M., Potrochov, A.O., et al., Regeneration of transgenic plants from hairy roots of Cichorium intybus L. var. Foliosum Hegi, Cytol. Genet., 2011, vol. 45, pp. 277–281. https://doi.org/10.3103/S0095452711050082 9. Matvieieva, N.A., Morgun, B.V., Lakhneko, O.R., et al., Agrobacterium rhizogenes-mediated transformation enhances the antioxidant potential of Artemisia tilesii Ledeb., Plant Physiol. Biochem., 2020, vol. 152, pp. 177–183. https://doi.org/10.1016/j.plaphy.2020.04.020 10. Matvieieva, N.A., Shachovsky, A.M., Gerasymenko, I.M., et al., Agrobacterium-mediated transformation of Cichorium intybus L. with interferon-α2b gene, Biopolym. Cell, 2009, vol. 25, pp. 120–125. https://doi.org/10.7124/bc.0007D4 11. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x 12. Pekal, A. and Pyrzynska, K., Evaluation of aluminium complexation reaction for flavonoid content assay, Food Anal. Methods, 2014, vol. 7, pp. 1776–1782.https://doi.org/10.1007/s12161-014-9814-x 13. Ramakrishna, A. and Ravishankar, G.A., Influence of abiotic stress signals on secondary metabolites in plants, Plant Signal. Behav., 2011, vol. 6, pp. 1720–1731. 14. Sanghera, G.S., Wani, S.H., Hussain, W., and Singh, N.B., Engineering cold stress tolerance in crop plants, Curr. Genomics, 2011, vol. 12, pp. 30–43. https://doi.org/10.2174/138920211794520178 15. Schulz, E., Tohge, T., Zuther, E., et al., Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana, Sci. Rep., 2016, vol. 6, art. 34027. https://doi.org/10.1038/srep34027 16. Schulz, E., Tohge, T., Zuther, E., et al., Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions, Plant Cell Environ., 2015, vol. 38, pp. 1658–1672. https://doi.org/10.1111/pce.12518 17. Shamloo, M., Babawale, E.A., Furtado, A., et al., Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments, Sci. Rep., 2017, vol. 7, art. 9133. https://doi.org/10.1038/s41598-017-09681-5 18. Srivastava, S. and Srivastava, A.K., Hairy root culture for mass-production of high-value secondary metabolites, Crit. Rev. Biotechnol., 2007, vol. 27, pp. 29–43. https://doi.org/10.1080/07388550601173918 19. Wahid, A., Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts, J. Plant Res., 2007, vol. 120, pp. 219–228. https://doi.org/10.1007/s10265-006-0040-5 20. Wang, L., Tu, Y.-C., Lian, T.-W., et al., Distinctive antioxidant and antiinflammatory effects of flavonols, J. Agric. Food Chem., 2006, vol. 54, pp. 9798–9804.https://doi.org/10.1021/jf0620719 21. Wang, S.Y. and Zheng, W., Effect of plant growth temperature on antioxidant capacity in strawberry, J. Agric. Food Chem., 2001, vol. 49, pp. 4977–4982. https://doi.org/10.1021/jf0106244 22. Wu, G., Johnson, S.K., Bornman, J.F., et al., Growth temperature and genotype both play important roles in sorghum grain phenolic composition, Sci. Rep., 2016, vol. 6, art. 21835. https://doi.org/10.1038/srep21835 |
|
|||
Coded & Designed by Volodymyr Duplij | Modified 03.10.23 |