TSitologiya i Genetika 2021, vol. 55, no. 1, 3-12
Cytology and Genetics 2021, vol. 55, no. 1, 1–9, doi: https://www.doi.org/10.3103/S0095452721010035

Intraspecific differentiation of white mistletoe (Viscum album L.) using intron length polymorphism of β-tubulin genes and SSR-analysis

Bilonozhko Yu.O., Rabokon A.M., Postovoitova A.S., Kalafat L.O., Privalikhin S.N., Demkovych A.E., Blume Ya.B., Pirko Ya.V.

  • Institute of Food Biotechnology and Genomics, of NAS of Ukraine, Оsypovskoho str., 2A, Kyiv, 04123, Ukraine

SUMMARY. Based on the analysis of the polymorphism of the length of the first intron of the β-tubulin genes, the difference between two subspecies of mistletoe (V. album spp. austriacum (Wiesb.) and V. album ssp. album L.) was shown. The possibility of using the TBP analysis to determine the sex of mistletoe plants is also shown. It was possible to isolate individual genotypes of white mistletoe based on the results of the SSR analysis. When assessing the effectiveness of using two types of DNA markers, it was shown that TBP analysis is advisable to differentiate between different subspecies of mistletoe, and SSR analysis is used to study genotypic variability within a particular subspecies.

Keywords: Viscum album L., DNA marker, SSR-, TВР-analysis

TSitologiya i Genetika
2021, vol. 55, no. 1, 3-12

Current Issue
Cytology and Genetics
2021, vol. 55, no. 1, 1–9,
doi: 10.3103/S0095452721010035

Full text and supplemented materials

References

1. Ahmed, Z. and Dutt, H.C., Restriction of Viscum album to few phorophytes in a habitat with diverse type of tree species, Austin. J. Plant. Biol., 2015, vol. 1, no. 2, pp. 101–105.

2. Barbu, C.O., Impact of white mistletoe (Viscum album ssp. abietis) infection on needles and crown morphology of silver fir (Abies alba Mill.), Not. Bot. Hort. Agrobot., 2012, vol. 40, no. 2, pp. 152–158. https://doi.org/10.15835/nbha4027 906

3. Bardini, M., Lee, D., Donini, P., et al., Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species, Genome, 2004, vol. 47, pp. 281–291. https://doi.org/10.1139/g03-132

4. Barney, C.W., Hawksworth, F.G., Geils, B.W., et al., Host of Viscum album, Eur. J. Forest. Pathol., 1998, vol. 28, pp. 187–208. https://doi.org/10.1111/j.1439-0329.1998.tb01249.x

5. Bilgili, E., Kadir Coskuner, A., and Baysal, I., The distribution of pine mistletoe (Viscum album ssp. austriacum) in Scots pine (Pinus sylvestris) forests: from stand to tree level, Scand. J. Forest Res., 2020, vol. 35, nos. 1–2, pp. 20–28. https://doi.org/10.1080/02827581.2020.1729402

6. Bilonozhko, Y.u.O., Ponomarenko, L.O., Rabokon, A.M., et al., Distribution of mistletoe (Viscum album L.), which parasitizes different woody plants species, in Kyiv and its genetic characteristics, Factors Experim. Evol. Organisms, 2019, vol. 25, pp. 106–110. https://doi.org/10.7124/FEEO.v25.1148

7. Bohling, N., Greuter, W., Raus, T., et al., Notes on the Cretan mistletoe, Viscum album subsp. creticum subsp. nova (Loranthaceae/Viscaceae), Israel. J. Plant Sci., 2002, vol 50, pp. 77–84. https://doi.org/10.1560/RRJ4-HU15-8BFM-WAUK

8. Braglia, L., Gavazzi, F., Giovannini, A., et al., TBP-assisted species and hybrid identification in the genus Passiflora, Mol. Breed., 2014, vol. 33, no. 1, pp. 209–219. https://doi.org/10.1007/s11032-013-9945-6

9. Breviario, D., Baird, W.V., Sangoi, S., et al., High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns, Mol. Breed., 2007, vol. 20, no. 3, pp. 249–59. https://doi.org/10.1007/s11032-007-9087-9

10. Galasso, I., Manca, A., Braglia, L., et al., h-TBP: an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz., Mol. Breed., vol. 28, pp. 635–645.https://doi.org/10.1007/s11032-010-9515-0

11. Galkin, S.I., Dragan, N.V., Doyko, N.M., et al., Mistletoe in the relations system of “host–parasite,” Plant Introd., 2017, vol. 3, pp. 71–78. doi 10.5281/zenodo.2325002

12. Green, M.R. and Sambrook, J., Molecular Cloning: A Laboratory Manual, 4th ed., New York: Cold Spring Harbor Laboratory Press, 2012.

13. Hillis, D.M. and Bull, J.J., An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis, Syst. Biol., 1993, vol. 42, pp. 182–192.

14. Kalia, R.K., Rai, M.K., Kalia, S., et al., Microsatellite markers: an overview of the recent progress in plants, Euphytica, 2011, vol. 177, no. 3, pp. 309–334. https://doi.org/10.1007/s10681-010-0286-9

15. Kartoolinejad, D., Hosseini, S.M., Mirnia, S.K., et al., The relationship among infection intensity of Viscum album with some ecological parameters of host trees, Int. J. Environ. Res., 2007, vol. 1, no. 2, pp. 143–149.

16. Kim, B.Y., Park, H.S., Kim, S., et al., Development of microsatellite markers for Viscum coloratum (Santalaceae) and their application to wild populations, Appl. Plant Sci., 2017, vol. 5, no. 1. https://doi.org/10.3732/apps.1600102

17. Kim, Ch.S., Kim, S.Y., Sun, B.Y., et al., A review of the taxonomic and ecological characteristics of Korean mistletoe types (Viscum, Korthalsella, Loranthus and Taxillus), Korean J. Pl. Taxon, 2013, vol. 43, no. 2, pp. 81–89.https://doi.org/10.11110/kjpt.2013.43.2.81

18. Kolodziejek, J., Patykowski, J., and Kolodziejek, R., Distribution, frequency and host patterns of European mistletoe (Viscum album subsp. album) in the major city of Lodz, Biologia, 2013, vol. 68, no. 1, pp. 55–64. https://doi.org/10.2478/s11756-012-0128-4

19. Krasylenko, Y., Sosnovsky, Y., Atamas, N., et al., The European mistletoe (Viscum album L.): distribution, host range, biotic interactions, and management worldwide with special emphasis on Ukraine, Botany, 2020, vol. 98, no. 9. https://doi.org/10.1139/cjb-2020-0037

20. Mejnartowicz, L., Relationship and genetic diversity of mistletoe (Viscum album L.) subspecies, Acta Soc. Bot. Polon., 2006, vol. 75, no. 1, pp. 39–49. https://doi.org/10.5586/asbp.2006.007

21. Milewicz, M. and Sawicki, J., Sex-linked markers in dioecious plants, Plant Omics, 2013, vol. 6, no. 2, pp. 144–149.

22. Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 5269–5273.

23. Pannell, J.R., Plant sex determination, Curr. Biol., 2017, vol. 27, no. 5, pp. 191–197. https://doi.org/10.1016/j.cub.2017.01.052

24. Pavlicek, A., Hrda, S., and Flegr, J., FreeTree—freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia, Folia Biol., 1999, vol. 45, pp. 97–99.

25. Rabokon, A.N., Pirko, Ya., Demkovych, A., et al., Intron length polymorphism of beta-tubulin genes as an effective instrument for plant genotyping, Mol. Appl. Genet. (Minsk), 2015, vol. 19, pp. 35–44. https://doi.org/10.7124/FEEO.v22.945

26. Rabokon, A.N., Pirko, Y.a.V., Demkovych, A.Ye., et al., Comparative analysis of the efficiency of intron-length polymorphism of β-tubulin genes and microsatellite loci for flax varieties genotyping, Cytol. Genet., 2018, vol. 52, no. 1, pp. 3–15. https://doi.org/10.3103/S0095452718010115

27. Rabokon, A., Demkovich, A., Sozinov, A., et al., Intron length polymorphism of β-tubulin genes of Aegilops biuncialis Vis., Cell Biol. Int., 2019, vol. 43, no. 9, pp. 1031–1039. https://doi.org/10.1002/cbin.10886

28. Raftoyannis, Y., Radoglou, K., and Bredemeier, M., Effects of mistletoe infestation on the decline and mortality of Abies cephalonica in Greece, Ann. For. Res., 2015, vol. 58, no. 1, pp. 55–65. https://doi.org/10.15287/afr.2015.347

29. Sanguesa-Barreda, G., Linares, J.C., and Camarero, J.J., Drought and mistletoe reduce growth and water-use efficiency of Scots pine, Forest Ecol. Manage., 2013, vol. 296, pp. 64–73. https://doi.org/10.1016/j.foreco.2013.01.028

30. Schaller, G., Urech, K., Grazi, G., et al., Viscotoxin composition of the three European subspecies of Viscum album, Planta Med., 1998, vol. 64, pp. 677–678.

31. Schink, M. and Mechelke, F., Sex-correlated differences in the protein pattern of Viscum album L. revealed by two-dimensional gel electrophoresis, Na-urwissenschaften, 1989, vol. 76, pp. 29–30.

32. Tsopelas, P., Angelopoulos, A., Economou, A., et al., Mistletoe (Viscum album) in the fir forest of Mount Parnis, Greece, Forest Ecol. Manage., 2004, vol. 202, pp. 59–65. https://doi.org/10.1016/j.foreco.2004.06.032

33. Vieira, M.L., Santini, L., Diniz, A.L., et al., Micro-satellite markers: what they mean and why they are so useful, Genet. Mol. Biol., 2016, vol. 9, no. 3, pp. 312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027

34. Wei, X., Guo, H., Che, P., et al., The complete chloroplast genome sequence of Viscum coloratum (Viscaceae), a semiparasitic medicinal plant, Mitochondr. DNA, 2019, vol. 4, no. 2, pp. 2904–2905. https://doi.org/10.1080/23802359. 2019.1660923

35. Zhou, W., Wang, Y., Zhang, G., et al., Molecular sex identification in dioecious Hippophae rhamnoides L. via RAPD and SCAR markers, Molecules, 2018, vol. 23, no. 5, p. 1048. https://doi.org/10.3390/molecules23051048

36. Zuber, D., Biological flora of Central Europe: Viscum album L., Flora, 2004, vol. 199, pp. 181–203.

37. Zuber, D. and Widmer, A., Genetic evidence for host specificity in the hemi-parasitic Viscum album L. (Viscaceae), Mol. Ecol., 2000, vol. 9, pp. 1069–1073.

38. Zuber, D. and Widmer, A., Phylogeography and host race differentiation in the European mistletoe (Viscum album L.), Mol. Ecol., 2009, vol. 18, pp. 1946–1962. https://doi.org/10.1111/j.1365-294X.2009.04168.x