TSitologiya i Genetika 2022, vol. 56, no. 5, 69-71
Cytology and Genetics 2022, vol. 56, no. 5, 475–480, doi: https://www.doi.org/10.3103/S0095452722050115

A brief landscape of epigenetic mechanisms in dental pathologies

Tynior W., Strzelczyk J.K.

  1. Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
  2. Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze, Poland

Epigenetics is the study of modifications in DNA expression without changing the sequences in deoxyribonucleic acid. Epigenetic mechanisms are specific “control” modifications responsible for the activity or inactivity of selected genes. Researchers are revealing a strong impact of epigenetic mechanisms on various general diseases in human. It gives clinicians great hope to understand pathomechanisms and start causal treatment. The possibility for dental clinicians is also wide and consists of diagnosis and treatment of diseases occurring in the oral cavity. This review presents the role of epigenetic mechanisms and the growing interest in their possible associations with dental pathologies such as periodontal diseases, craniofacial malformations, and tooth agenesis.

Keywords: epigenetics, genes, dental pathologies, periodontal diseases, tooth agenesis

TSitologiya i Genetika
2022, vol. 56, no. 5, 69-71

Current Issue
Cytology and Genetics
2022, vol. 56, no. 5, 475–480,
doi: 10.3103/S0095452722050115

Full text and supplemented materials

References

Alaskhar Alhamwe, B., Khalaila, R., Wolf, J., et al., Histone modifications and their role in epigenetics of atopy and allergic diseases, Allergy, Asthma, Clin. Immunol., 2018, vol. 14, art. ID 39. https://doi.org/10.1186/s13223-018-0259-4

Alegría-Torres, J.A., Baccarelli, A., and Bollati, vol., Epigenetics and lifestyle, Epigenomics, 2011, vol. 3. pp. 267–277. https://doi.org/10.2217/epi.11.22

Al-Moghrabi, N., Al-Qasem, A.J.S., and Aboussekhra, A., Methylation-related mutations in the BRCA1 promoter in peripheral blood cells from cancer-free women, Int. J. Oncol., 2011, vol. 39, no. 1, pp. 129–135. https://doi.org/10.3892/ijo.2011.1021

Andia, D.C., de Oliveira, N.F.P., Casarin, R.C.V., et al., DNA Methylation status of the IL8 gene promoter in aggressive periodontitis, J. Periodontol., 2010, vol. 81, no. 9, pp. 1336–1341. https://doi.org/10.1902/jop.2010.100082

Audia, J.E. and Campbell, R.M., Histone modifications and cancer, Cold Spring Harbor Perspect. Biol., 2016, vol. 8, art. ID a019521. https://doi.org/10.1101/cshperspect.a019521

Banjar, W. and Alshammari, M.H., Genetic factors in pathogenesis of chronic periodontitis, J. Taibah Univ. Med. Sci., 2014, vol. 9, no. 3, pp. 245–247. https://doi.org/10.1016/j.jtumed.2014.04.003

Bannister, A.J. and Kouzarides, T., Regulation of chromatin by histone modifications, Cell Res., 2011, vol. 21, pp. 381–395. https://doi.org/10.1038/cr.2011.22

Barros, S.P. and Offenbacher, S., Epigenetics: connecting environment and genotype to phenotype and disease, J. Dent. Res., 2009, vol. 88, pp. 400–408. https://doi.org/10.1177/0022034509335868

Barros, S.P. and Offenbacher, S., Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response, Periodontology, 2014, vol. 64, pp. 95–110. https://doi.org/10.1111/prd.12000

Beaty, T.H., Ruczinski, I., Murray, J.C., et al., Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate, Genet. Epidemiol., 2011, vol. 35, no. 6, pp. 469–478. https://doi.org/10.1002/gepi.20595

Bin Mohsin, A.H. and Barshaik, S., Epigenetics in dentistry: a literature review, J. Clin. Epigenetics, 2017, vol. 3, no. 1, pp. 1–4. https://doi.org/10.21767/2472-1158.100035

Chai, Y. and Maxson, R.E., Recent advances in craniofacial morphogenesis, Dev. Dyn., 2006, vol. 235, no. 9, pp. 2353–2375. https://doi.org/10.1002/dvdy.20833

de Faria Amormino, S.A., Arão, T.C., Saraiva, A.M., et al., Hypermethylation and low transcription of TLR2 gene in chronic periodontitis, Hum. Immunol., 2013, vol. 74, no. 9, pp. 1231–1236. https://doi.org/10.1016/j.humimm.2013.04.037

De Oliveira, N.F.P., Andia, D.C., Planello, A.C., et al., TLR2 and TLR4 gene promoter methylation status during chronic periodontitis, J. Clin. Periodontol., 2011, vol. 38, no. 11, pp. 975–983. https://doi.org/10.1111/j.1600-051X.2011.01765.x

De Souza, A.P., Planello, A.C., Marques, M.R., et al., High-throughput DNA analysis shows the importance of methylation in the control of immune inflammatory gene transcription in chronic periodontitis, Clin. Epigenet., 2014, vol. 6, art. ID. https://doi.org/10.1186/1868-7083-6-15

Delpu, Y., Cordelier, P., Cho, W.C., and Torrisani, J., DNA methylation and cancer diagnosis, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 15029–15058. https://doi.org/10.3390/ijms140715029

Ebersole, J.L., Dawson, D.R., Morford, L.A., et al., Periodontal disease immunology: ‘double indemnity’ in protecting the host, Periodontol, 2013, vol. 62, no. 1, pp. 163–202. https://doi.org/10.1111/prd.12005

Emfietzoglou, R., Pachymanolis, E., and Piperi, C., Impact of epigenetic alterations in the development of oral diseases, Curr. Med. Chem., 2021, vol. 28, no. 6, pp. 1091–1103. https://doi.org/10.2174/0929867327666200114114802

Faam, B., Ali Ghaffari, M., Ghadiri, A., and Azizi, F., Epigenetic modifications in human thyroid cancer (Review), Biomed. Rep., 2015, vol. 3, no. 1, pp. 3–8. https://doi.org/10.3892/br.2014.375

Frazier-Bowers, S.A., Guo, D.C., Cavender, A., et al., A novel mutation in human PAX9 causes molar oligodontia, J. Dent. Res., 2002, vol. 81, no. 2, pp. 129–133.

Hajishengallis, G., Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response, Trends Immunol., 2014, vol. 35, no. 1, pp. 3–11. https://doi.org/10.1016/j.it.2013.09.001

Hart, T.C. and Kornman, K.S., Genetic factors in the pathogenesis of periodontitis, Periodontology, 1997, vol. 14, n. 1, pp. 202–215. https://doi.org/10.1111/j.1600-0757.1997.tb00198.x

Howe, L.J., Richardson, T.G., Arathimos, R., et al., Evidence for DNA methylation mediating genetic liability to non-syndromic cleft lip/palate, Epigenomics, 2019, vol. 11, no. 2, pp. 133–145. https://doi.org/10.2217/epi-2018-0091

Hua, J.T., Chen, S., and He, H.H., Landscape of noncoding RNA in prostate cancer, Trends Genet., 2019, vol. 35, no. 11, pp. 840–851. https://doi.org/10.1016/j.tig.2019.08.004

Ishikawa, I., Host responses in periodontal diseases: a preview, Periodontology, 2007, vol. 43, no. 1, pp. 9–13. https://doi.org/10.1111/j.1600-0757.2006.00188.x

Joehanes, R., Just, A.C., Marioni, R.E., et al., Epigenetic signatures of cigarette smoking, Circ.: Cardiovasc. Genet., 2016, vol. 9, no. 5, pp. 436–447. https://doi.org/10.1161/CIRCGENETICS.116.001506

Johnston, M.O., Mutations and New Variation: Overview, in Encyclopedia of Life Sciences, Chichester: John Wiley & Sons, 2006.

Jones, P.A. and Baylin, S.B., The fundamental role of epigenetic events in cancer, Nat. Rev. Genet., 2002, vol. 3, no. 6, pp. 415–428. https://doi.org/10.1038/nrg816

Kaelin, W.G. and McKnight, S.L., Influence of metabolism on epigenetics and disease, Cell, 2013, vol. 153, no. 1, pp. 56–69. https://doi.org/10.1016/j.cell.2013.03.004

Kiedrowski, M. and Mroz, A., The effects of selected drugs and dietary compounds on proliferation and apoptosis in colorectal carcinoma, Contemp. Oncol., 2014, vol. 18, no. 4, pp. 222–226. https://doi.org/10.5114/wo.2014.44296

Kurushima, Y., Tsai, P.C., Castillo-Fernandez, J., et al., Epigenetic findings in periodontitis in UK twins: a cross-sectional study, Clin. Epigenet., 2019, vol. 11, art. ID 27. https://doi.org/10.1186/s13148-019-0614-4

Li, D., Yang, Y., Li, Y., et al., Epigenetic regulation of gene expression in response to environmental exposures: From bench to model, Sci. Total Environ., 2021, vol. 776, art. ID 145998. https://doi.org/10.1016/j.scitotenv.2021.145998

Marazita, M.L., The evolution of human genetic studies of cleft lip and cleft palate, Annu. Rev. Genomics Hum. Genet., 2012, vol. 13, pp. 263–283. https://doi.org/10.1146/annurev-genom-090711-163729

Moosavi, A. and Ardekani, A.M., Role of epigenetics in biology and human diseases, Iran. Biomed. J., 2016, vol. 20, pp. 246–258. https://doi.org/10.22045/ibj.2016.01

Mueller, D.T. and Callanan, V.P., Congenital malformations of the oral cavity, Otolaryngol. Clin. North Am., 2007, vol. 40, no. 1, pp. 141–160. https://doi.org/10.1016/j.otc.2006.10.007

Muñoz-Carrillo, J.L., et al., Pathogenesis of periodontal disease, 2019, pp. 1–14.

Nibali, L., Aggressive periodontitis: microbes and host response, who to blame?, Virulence, 2015, vol. 6, no. 3, pp. 223–228. https://doi.org/10.4161/21505594.2014.986407

Ogasawara, S., Maesawa, C., Yamamoto, M., et al., Disruption of cell-type-specific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers, Oncogene, 2004, vol. 23, pp. 1117–1124. https://doi.org/10.1038/sj.onc.1207211

Papapanou, P.N., Sanz, M., Buduneli, N., et al., Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the classification of periodontal and peri-implant diseases and conditions, J. Periodontol., 2018, vol. 89, no. S1, pp. S173–S182. https://doi.org/10.1002/JPER.17-0721

Rangasamy, S., D’Mello, S.R., and Narayanan, V., Epigenetics, autism spectrum, and neurodevelopmental disorders, Neurotherapeutics, 2013, vol. 10, pp. 742–756. https://doi.org/10.1007/s13311-013-0227-0

Richardson, B. and Yung, R., Role of DNA methylation in the regulation of cell function, J. Lab. Clin. Med., 1999, vol. 134, no. 4, pp. 333–340. https://doi.org/10.1016/S0022-2143(99)90147-6

Rinn, J.L., Chang, H.Y., Genome regulation by long noncoding RNAs, Annu. Rev. Biochem., 2012, vol. 81, pp. 145–166. https://doi.org/10.1146/annurev-biochem-051410-092902

Romano, G., Veneziano, D., Acunzo, M., and Croce, C.M., Small non-coding RNA and cancer, Carcinogenesis, 2017, vol. 38, no. 5, pp. 485–491. https://doi.org/10.1093/carcin/bgx026

Salvi, A., Giacopuzzi, E., Bardellini, E., et al., Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis, Int. J. Mol. Med., 2016, vol. 38, no. 5, pp. 1338–1348. https://doi.org/10.3892/ijmm.2016.2742

Sarkar, T., Bansal, R., and Das, P., A novel G to A transition at initiation codon and exon-intron boundary of PAX9 identified in association with familial isolated oligodontia, Gene, 2017, vol. 635, pp. 69–76. https://doi.org/10.1016/j.gene.2017.08.020

Seo, J.-Y., Park, Y.-J., Yi, Y.-A., et al., Epigenetics: general characteristics and implications for oral health, Restor. Dent. Endod., 2015, vol. 40, no. 1, pp. 14–22. https://doi.org/10.5395/rde.2015.40.1.14

Sepolia, N., Jindal, D., Kaushwaha, S., et al., A revolution in dentistry: epigenetics, Dent. J. Adv. Stud., 2019, vol. 7, pp. 001–005. https://doi.org/10.1055/s-0039-1685128

Shamsi, M.B., Firoz, A.S., Imam, S.N., et al., Epigenetics of human diseases and scope in future therapeutics, J. Taibah Univ. Med. Sci., 2017, vol. 12, no. 3, pp. 205–211. https://doi.org/10.1016/j.jtumed.2017.04.003

Shayevitch, R., Askayo, D., Keydar, I., Ast, G., The importance of DNA methylation of exons on alternative splicing, RNA, 2018, vol. 24, no. 10, pp. 1351–1362. https://doi.org/10.1261/rna.064865.117

Slots, J., Periodontitis: facts, fallacies and the future, Periodontology, 2017, vol. 75, no. 1, pp. 7–23. https://doi.org/10.1111/prd.12221

Sperber, G.H., Head and neck embryology, in Current Reconstructive Surgery, Serletti, , Eds., New York: McGraw-Hill, 2017, vol. 1.

Srijyothi, L., Ponne, S., Prathama, T., et al., Roles of non-coding RNAs in transcriptional regulation, in Transcriptional Post-transcriptional Regulation, 2018. https://doi.org/10.5772/intechopen.76125

Tallón-Walton, V., Manzanares-Céspedes, M.C., Carvalho-Lobato, P., et al., Exclusion of PAX9 and MSX1 mutation in six families affected by tooth agenesis. A genetic study and literature review, Med. Oral Pathol., Oral Cir. Bucal., 2014. vol. 19, no. 3, art. ID e248-54. https://doi.org/10.4317/medoral.19173

Tian, X. and Fang, J., Current perspectives on histone demethylases, Acta Biochim. Biophys. Sin. (Shanghai), 2007, vol. 39, no. 2, pp. 81–88. https://doi.org/10.1111/j.1745-7270.2007.00272.x

Tokizane, T., Shiina, H., Igawa, M., et al., Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer, Clin. Cancer Res., 2005, vol. 11, no. 16, pp. 5793–5801. https://doi.org/10.1158/1078-0432.CCR-04-2545

Twigg, S.R.F. and Wilkie, A.O.M., New insights into craniofacial malformations, Hum. Mol. Genet., 2015, vol. 24, pp. R50–R59. https://doi.org/10.1093/hmg/ddv228

Vieira, A.R., Meira, R., Modesto, A., Murray, J.C., MSX1, PAX9, and TGFA contribute to tooth agenesis in humans, J. Dent. Res., 2004, vol. 83, no. 9, pp. 723–727. https://doi.org/10.1177/154405910408300913

Vyas, T., Gupta, P., Kumar, S., et al., Cleft of lip and palate: A review, J. Fam. Med. Prim. Care, 2017, vol. 6, art. ID 2621. https://doi.org/10.4103/jfmpc.jfmpc_472_20

Waddington, C.H., Genetic assimilation of the bithorax phenotype, Evolution, 1956, vol. 10, no. 1, pp. 1–13. https://doi.org/10.2307/2406091

Wang, J., Sun, K., Shen, Y., et al., DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia, Sci. Rep., 2016, vol. 6, art. ID 19162. https://doi.org/10.1038/srep19162

Williams, M.A. and Letra, A., The changing landscape in the genetic etiology of human tooth agenesis, Genes (Basel), 2018, vol. 9, no. 5, art. ID 155. https://doi.org/10.3390/genes9050255

Wilson, A.S., Power, B.E., Molloy, P.L., DNA hypomethylation and human diseases, Biochim. Biophys. Acta, Rev. Cancer, 2007. vol. 1775. pp. 138–162. https://doi.org/10.1016/j.bbcan.2006.08.007

Wu, C.-T. and Morris, J.R., Genes, genetics, and ep genetics: a correspondence, Science, 2001, vol. 293, no. 5532, pp. 1103–1105. https://doi.org/10.1126/science.293.5532.1103

Wu, H., Tao, J., and Sun, Y.E., Regulation and function of mammalian DNA methylation patterns: a genomic perspective, Briefings Funct. Genomics, 2012, vol. 11, no. 3, pp. 240–250. https://doi.org/10.1093/bfgp/els011

Yang, X., Shi, B., Li, L., et al., Death receptor 6 (DR6) is required for mouse B16 tumor angiogenesis via the NF-κB, P38 MAPK and STAT3 pathways, Oncogenesis, 2016, vol. 5, art. ID 206. https://doi.org/10.1038/oncsis.2016.16

Yi, X., Jiang, X., Li, X., Jiang, D.S., Histone lysine methylation and congenital heart disease: From bench to bedside (Review), Int. J. Mol. Med., 2017, vol. 40, no. 4, pp. 953–964. https://doi.org/10.3892/ijmm.2017.3115

Zhang, S., Barros, S.P., Moretti, A.J., et al., Epigenetic regulation of TNFA expression in periodontal disease, J. Periodontol., 2013, vol. 84, no. 11, pp. 1606–1616. https://doi.org/10.1902/jop.2013.120294

Zhang, S., Barros, S.P., Niculescu, M.D., et al., Alteration of PTGS2 promoter methylation in chronic periodontitis, J. Dent. Res., 2010, vol. 89, no. 2, pp. 133–137. https://doi.org/10.1177/0022034509356512

Zhang, Y., Lv, J., Liu, H., et al., HHMD: the human histone modification database, Nucleic Acids Res., 2009, vol. 38, pp. 149–154. https://doi.org/10.1093/nar/gkp968