Цитологія і генетика 2023, том 57, № 6, 48-59
Cytology and Genetics 2023, том 57, № 6, 556–566, doi: https://www.doi.org/https://doi.org/10.3103/S0095452723060105

Активність ненуклеозидних інгібіторів репаративного ферменту О6-метилгуанін-ДНК метилтрансферази в клітинах людини in vitro

Жувака К.С., Волинець Г.П., Рубан Т.П., Нідоєва З.М., Яцишина А.П., Мацевич Л.Л., Бджола В.Г., Ярмолюк С.М., Лукаш Л.Л.

  1. Інститут молекулярної біології та генетики НАНУ, відділ Генетики людини, вул. Академіка Заболотного, 150, Київ, Україна, 03680
  2. Інститут молекулярної біології та генетики НАНУ, відділ Біомедичної хімії, вул. Академіка Заболотного, 150, Київ, Україна, 03680

Одним зі способів підвищення ефективності алкілувальної хіміотерапії є зменшення рівня репаративного білка MGMT (O6-метилгуанін-ДНК-метилтрансфераза) в ракових клітинах. Стандартний інгібітор MGMT О6-бензилгуанін (БГ) виявився цитотоксичним для гемопоетичних клітин на третій стадії клінічних досліджень, тому пошук нових альтернативних інгібіторів є актуальним. В цій роботі були проведені дослідження для визначення цитотоксичності та ефективності нових потенційних інгібіторів MGMT, які були змодельовані за допомогою молекулярного гнучкого докінгу. На першому етапі дослідження для оцінки цитотоксичності були проведені МТТ-та клоногенний тести, а яких клітини HЕp-2 культивували з досліджуваними сполуками у концентрації 10 мкМ. На другому етапі проводили оцінку ефективності сполук. Одним з методів дослідження був клоногенний тест, за якого обробка клітин складалась з комбінацій досліджуваних сполук (10 мкМ) та алкілувального агенту N-метил-N′-нітро-N-нітрозогуанідину (MNNG) в різних концентраціях. Ще одним методом був Вестерн-блот аналіз, для якого білки екстрагували з клітин НЕр-2, оброблених потенційними інгібіторами у комбінації з MNNG. Отримані результати були проаналізовані в програмах Microsoft Excel 2016, Origin8.1 та ImageLab. В результаті 4 з 5 досліджуваних сполук продемонстрували низьку цитотоксичність в концентрації 10 мкМ в клітинах НEр-2, порівняно зі стандартним інгібітором БГ. За даними клоногенного тесту найбільш ефективною виявилась сполука 41В (5-Бензо[1,3]діок-сол-5-ілметилен-тіазолідин-2,4-діон), а також високу ефективність проявили сполуки 41 (5-(5-Хлоро-2-гідрокси-бензиліден)-4-тіоксо-тіазолідин-2-он) та 89 (2-[5-(4-Бромо-феніл)-піримідин-4-іл]-5-етокси-фенол). Результати Вестерн-блот аналізу показали значне зниження білка MGMT після обробок сполуками  41, 41В та 89, тим самим підтверджуючи інгібувальні властивості даних сполук.

Ключові слова: Репаративний фермент MGMT, нові потенційні інгібітори MGMT, алкілуючий агент, клітинна лінія HЕp-2

Цитологія і генетика
2023, том 57, № 6, 48-59

Current Issue
Cytology and Genetics
2023, том 57, № 6, 556–566,
doi: https://doi.org/10.3103/S0095452723060105

Повний текст та додаткові матеріали

Цитована література

Arslan, F.T., Yurdakok-Dikmen, B., Akgedik, R., and Topcu, G., Nitrosoguanidine-induced genotoxicity and oxidative stress in human gastric adenocarcinoma cells, Mutat. Res., 2016, vol. 797, pp. 28–34.

Chae, M.-Y., Swenn, K., Kanugula, S., Dolan, M.E., Pegg, A.E., and Moschel, R.C., 8-substituted O6-benzylguanine, substituted 6(4)-(benzyloxy)pyrimidine, and related derivatives as inactivators of human O6-alkylguanine-DNA alkyltransferase, J. Med. Chem., 1995, vol. 38, no. 2, pp. 359–365. https://doi.org/10.1021/jm00002a018

Christmann, M., Verbeek, B., Roos, W.P., and Kaina, B., O6-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: Enzyme activity, promoter methylation and immunohistochemistry, Biochim. Biophys. Acta, Rev. Cancer, 2011, vol. 1816, no. 2, pp. 179–190. https://doi.org/10.1016/j.bbcan.2011.06.002

Dolan, M., Chae, M., Pegg, A., et al., Metabolism of O6-benzylguanine, an inactivator of O6-alkylguanine-DNA alkyltransferase, Cancer Res., 1994, vol. 54, no. 19, pp. 5123–5130. https://doi.org/10.1158/0008-5472.CAN-14-2047

Green, S.J. and Michael, R., Molecular Cloning, New York: Cold Spring Harbor Lab., 2012.

Griffin, R.J., Arris, C.E., Bleasdale, C., Boyle, F.T., Calvert, A.H., Curtin, N.J., Dalby, C., Kanugula, S., Lembicz, N.K., Newell, D.R., Pegg, A.E., and Golding, B.T., Resistance-Modifying Agents. 8. Inhibition of O 6-Alkylguanine-DNA Alkyltransferase by O 6-Alkenyl-, O 6-Cycloalkenyl-, and O 6-(2-Oxoalkyl)guanines and Potentiation of Temozolomide Cytotoxicity in Vitro by O6-(1-Cyclopentenylmethyl)guanine, J. Med. Chem., 2000, vol. 43, no. 22, pp. 4071–4083. https://doi.org/10.1021/jm000961o

Kaina, B., Margison, G.P., and Christmann, M., Targeting O 6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy, Cell. Mol. Life Sci., 2010, vol. 67, no. 21, pp. 3663–3681. https://doi.org/10.1007/s00018-010-0491-7

Kotsarenko, K.V., Lylo, V.V., Macewicz, L.L., Dasyukevich, O.I., Poltoratskaya, L.V., and Burkovskaya, T.E., Changes in the MGMT gene expression under the influence of exogenous cytokines in human cells in vitro, Cytol. Genet., 2013, vol. 47, no. 4, pp. 202–209. https://doi.org/10.3103/S0095452713040087

Kotsarenko, K., Lylo, V., Ruban, T., Macewicz, L., and Lukash, L., Effects of some growth factors and cytokines on the expression of the repair enzyme MGMT and protein MARP in human cells in vitro, Biochem. Genet., 2018, vol. 56, pp. 459–477. https://doi.org/10.1007/s10528-018-9854-9

Lipinski, C.A., Lead- and drug-like compounds: the rule-of-five revolution, Drug Discovery Today: Technol., 2004, vol. 1, no. 4, pp. 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

Lopez, S., Margison, G.P., McElhinney, R.S., Cordeiro, A., McMurry, T.B H., and Rozas, I., Towards more specific O 6-methylguanine-DNA methyltransferase (MGMT) inactivators, Bioorg. Med. Chem., 2011, vol. 19, no. 5, pp. 1658–1665. https://doi.org/10.1016/j.bmc.2011.01.038

Lukash, L.L., Bodt, J., Pegg, A.E., Dolan, M.E., Maher, V.M., and McCormick, J., Effect of O 6-alkylguanine-DNA alkyltransferase on the frequency and spectrum of mutations induced by N-methyl-N’-nitro-N-nitrosoguanidine in the HPRT gene of diploid human fibroblasts, Mutat. Res., 1991, vol. 250, no. 12, pp. 397–409. https://doi.org/10.1016/0027-5107(91)90196-U

McElhinney, R., Donnelly, D., McCormick, A., et al., Inactivation of O 6-alkylguanine-DNA alkyltransferase. 1. Novel O 6-(hetarylmethyl)guanines having basic rings in the side chain, J. Med. Chem., 1998, vol. 41, no. 26, pp. 5265–5271. https://doi.org/10.1021/jm9804388

Mitra, S., MGMT: A personal perspective, DNA Repair, 2007, vol. 6, no. 8, pp. 1064–1070. https://doi.org/10.1016/j.dnarep.2007.03.007

Mohanty, S., Sharma, P., Gupta, P.K., and Chatterjee, S., Nitrosoguanidine-induced DNA damage response in Escherichia coli cells, Mutat. Res., 2019, vol. 842, pp. 18–27. https://doi.org/10.1016/j.mrgentox.2019.04.006

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexiblity, J. Comput. Chem., 2009, vol. 30, pp. 2785–2791.

Moschel, R.C., McDougall, M., Dolan, M.E., Pegg, A.E., and Phillips, D.R., Structural features of substituted purine derivatives compatible with depletion of human O 6-alkylguanine-DNA alkyltransferase, J. Med. Chem., 1992, vol. 35, no. 23, pp. 4486–4491. https://doi.org/10.1021/jm00103a019

Oshiro, S., Tsugu, H., Komatsu, F., Ohmura, T., Ohta, M., Sakamoto, S., Fukushima, T., and Inoue, T., Efficacy of Temozolomide Treatment in Patients with High-grade Glioma, Anticancer Res., 2009, vol. 29, pp. 911–918. https://ar.iiarjournals.org/content/29/3/911.full.

Pauly, G., Loktionova, N., Fang, Q., et al., Substitution of aminomethyl at the meta-position enhances the inactivation of O 6-alkylguanine-DNA alkyltransferase by O 6-benzylguanine, J. Med. Chem., 2008, vol. 51, no. 22, pp. 7144–7153. https://doi.org/10.1021/jm800758y

Pedretti, A., Mazzolari, A., Gervasoni, S., Fumagalli, L., and Vistoli, G., The VEGA suite of programs: an versatile platform for cheminformatics and drug design projects, Bioinformatics, 2021, vol. 37, no. 8, pp. 1174–1175. https://doi.org/10.1093/bioinformatics/btaa774

Pegg, A.E., Repair of O 6-alkylguanine by alkyltransferases, Mutat. Res., 2000, vol. 462, nos. 2–3, pp. 83–100. https://doi.org/10.1016/s1383-5742(00)00017-x

Pegg, A.E., Multifaceted roles of alkyltransferase and related proteins in DNA Repair, DNA damage, resistance to chemotherapy, and research tools, Chem. Res. Toxicol., 2011, vol. 24, no. 5, pp. 618–639. https://doi.org/10.1021/tx200031q

Quinn, J.A., Jiang, S.X., Carter, J., Reardon, D.A., Desjardins, A., Vredenburgh, J.J., Friedman, H.S., Phase II trial of gliadel plus O 6-benzylguanine in Adults with recurrent glioblastoma multiforme, Clin. Cancer Res., 2009, vol. 15, no. 3, pp. 1064–1068. https://doi.org/10.1158/1078-0432.ccr-08-2130

Ranson, M., Lomeguatrib, a potent inhibitor of O 6-alkylguanine-DNA-alkyltransferase: Phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors, Clin. Cancer Res., 2006, vol. 12, no. 5, pp. 1577–1584. https://doi.org/10.1158/1078-0432.ccr-05-2198

Ruiz, F., Gil-Redondo, R., Morreale, A., et al., Structure-based discovery of novel non-nucleosidic DNA alkyltransferase inhibitors: virtual screening and in vitro and in vivo activities, J. Chem. Inf. Modell., 2008, vol. 48, no. 10, pp. 1972–1982. https://doi.org/10.1021/ci800202t

Sharma, S., Salehi, S., Yang, Y., and Vessella, R.L., Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis, Anticancer Res., 2009, vol. 29, no. 10, pp. 3759–3768. https://doi.org/10.1016/j.etap.2019.03.012

Terashima, I. and Kohda, K., Inhibition of human O 6-alkylguanine-DNA alkyltransferase and potentiation of the cytotoxicity of chloroethylnitrosourea by 4(6)-(benzyloxy)-2,6(4)-diamino-5-(nitro or nitroso)pyrimidine derivatives and analogues, J. Med. Chem., 1998, vol. 41, no. 4, pp. 503–508. https://doi.org/10.1021/jm970712f

Verbeek, B., Southgate, T.D., Gilham, D.E., and Margison, G.P., O 6-methylguanine-DNA methyltransferase inactivation and chemotherapy, Br. Med. Bull., 2008, vol. 85, no. 1, pp. 17–33. https://doi.org/10.1093/bmb/ldm036

Volynets, G.P., Ruban, T.P., Yatsyshina, A.P., Matsevich, L.L., Bdzhola, V.G., Yarmolyuk, S.M., and Lukash, L.L., RF Patent 127059, 2018. https:// base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=2.492.48.

Volynets, G.P., Yatsyshina, A.P., Ruban, T.P., Matse-vich, L.L., Nidoyeva, Z.M., Balanda, A.O., Bdzhola, V.G., Yarmolyuk, S.M., and Lukash, L.L., Ukraine Patent 122373, 2020. https://base.uipv.org/ searchINV/search.php?action=viewdetails&IdClaim =271905.

Wang, C., Abegg, D., Hoch, D., and Adibekian, A., Chemoproteomics-enabled discovery of a potent and selective inhibitor of the DNA repair protein MGMT, Angew. Chem., Int. Ed., 2016, vol. 55, no. 10, pp. 2911–2915. https://doi.org/10.1002/anie.201510203

Yu, W., Zhang, L., Wei, Q., and Shao, A., O6-methylguanine-DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy, Front. Oncol., 2020, vol. 9, p. 1547. https://doi.org/10.3389/fonc.2019.01547

Zhang, X., Zhou, Y., Hu, Y., and Huang, P., Nitrosoguanidine-induced DNA damage and cell cycle arrest in human liver cells, Environ. Toxicol. Pharmacol., 2019, vol. 68, pp. 66–71. https://doi.org/10.1016/j.etap.2019.03.012