Цитологія і генетика 2019, том 53, № 2, 12-20
Cytology and Genetics 2019, том 53, № 2, 106–112, doi: https://www.doi.org/10.3103/S0095452719020051

Использование микроядерного теста у Pinus pallasiana D. Don и Picea abies (L.) Kаrst. для оценивания влияния техногенного загрязнения

Коршиков И.И., Белоножко Ю.А., Лаптева Е.В.

  1. Донецкий ботанический сад НАН Украины
  2. ДУ «Институт пищевой биотехнологии и геномики НАН Украины»
  3. Криворожский ботанический сад НАН Украины

Представлены данные о частоте микроядер (МЯ) в меристеме проростков Pinus pallasiana D. Don и Picea abies (L.) Kаrst. из природных популяций и насаждений техногенно загрязненных территорий. В контрольной поуляции P. pallasiana клетки с МЯ встречались с частотой 0,95 ± 0,13 %. Увеличение доли клеток с МЯ наблюдалось в условиях интродукции и техногенного загрязнения (2,41–3,38 %). Для P. abies показаны подобные результаты. Отмечено различное количество МЯ в патологической клетке (1–2 для P. pallasiana и 1–6 для P. abies). Размеры МЯ варьировали от 0,13 до 14,93 % от объема основного ядра в клетках P. pallasiana и от 0,07 до 61,87 % P. abies. Выявлены многоядерные клетки и клетки с ядром неправильной формы. Установлена тесная корреляционная зависимость между цитогенетическими нарушениями и частотой МЯ (r = 0,98). Предлагается использовать МЯ проростков семян изученных видов для оценки генотоксичности техногенно загрязненных территорий.

РЕЗЮМЕ. Представлено дані про частоту мікроядер (МЯ) в меристемі проростків Pinus pallasiana D. Don і Picea abies (L.) Kаrst. з природних популяцій і насаджень техногенно забруднених територій. У контрольній популяції P. pallasiana клітини з МЯ зустрічалися з частотою 0,95 ± 0,13 %. Збільшення частки клітин з МЯ спостерігалося в умовах інтродукції та техногенного забруднення (2,41–3,38 %). Для P. abies показані подібні результати. Виявлено різну кількість МЯ в патологічній клітині (1–2 для P. pallasiana і 1–6 для P. abies). Розміри МЯ варіювали від 0,13 до 14,93 % від об’єму основного ядра в клітинах P. pallasiana і від 0,07 до 61,87 % P. abies. Спостерігалися багатоядерні клітини і клітини з ядром неправильної форми. Встановлено щільну кореляційну залежність між цитогенетичними порушеннями і частотою МЯ (r = 0,98). Пропонується використовувати МЯ проростків насіння вивчених видів для оцінки генотоксичності техногенно забруднених територій.

Ключові слова: Pinus pallasiana D. Don, Picea abies (L.) Kаrst., микроядра, микроядерный тест, биотестирование

Цитологія і генетика
2019, том 53, № 2, 12-20

Current Issue
Cytology and Genetics
2019, том 53, № 2, 106–112,
doi: 10.3103/S0095452719020051

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Yemets, A.I., Blume, R.Ya., and Sorochinsky, B.V., Adaptation of the gymnosperms to the conditions of irradiation in the Chernobyl zone: from morphological abnormalities to the molecular genetic consequences, Cytol. Genet., 2016, vol. 50, no. 6, pp. 415–419. https://doi.org/10.3103/S0095452716060086

2. Kurinny, D.A. and Kostikov, I.Yu., Co-cultivation of unicellular green algae (Chlorophyta, Chlorophyceae) and lymphocytes of peripheral blood of humans as a test system for radiobiological studies, Int. J. Algae, 2017, vol. 19, no. 2, pp. 163–172. https://doi.org/10.1615/InterJAlgae.v19.i2.60

3. Decordier, I., Papine, A., Vande-Loock, K., Plas, G., Soussaline, F., and Kirsch-Volders, M., Automated image analysis of micronuclei by IMSTAR for biomonitoring, Mutagenesis, 2011, vol. 26, no. 1, pp. 163–168. https://doi.org/10.1093/mutage/geq063

4. Hussain, B., Sultana, T., Sultana, S., Al-Ghanim, K.A., Masood, Sh., Ali, M., and Mahboob, Sh., Microelectrophoretic study of environmentally induced DNA damage in fish and its use for early toxicity screening of freshwater bodies, Environ. Monit. Assess., 2017, vol. 189, pp. 115–126. https://doi.org/10.1007/s10661-017-5813-x

5. Rocha, C.A., Cunha, L.A., Pinheiro, R.H., Bahia, M.O., and Burbano, R.M., Studies of micronuclei and other nuclear abnormalities in red blood cells of Colossoma macropomum exposed to methylmercury, Genet. Mol. Biol., 2011, vol. 34, no. 4, pp. 694–697. https://doi.org/10.1590/S1415-47572011000400024

6. Chang, P., Li, Ya., and Li, D., Micronuclei levels in peripheral blood lymphocytes as a potential biomarker for pancreatic cancer risk, Carcinogenesis, vol. 32, no. 2, pp. 210–215. https://doi.org/10.1093/carcin/bgq247

7. Güez, C.M., Waczuk, E.P., Pereira, K.B., Querol, M.V., Rocha, J.B., and Oliveira, L.F., In vivo and in vitro genotoxicity studies of aqueous extract of Xanthium spinosum, Brazil. J. Pharmaceut. Sci., 2012, vol. 48, no. 3, pp. 461–467. https://doi.org/10.1590/S1984-82502012000300013

8. Braham, R.P., Blazer, V.S., Shaw, C.H., and Mazik, P.M., Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA, Environ. Mol. Mutagen., 2017, vol. 58, no. 8, pp. 570–81. https://doi.org/10.1002/em.22123

9. Kanev, M., Özdemir, K., and Gökalp, F., Genotoxic evaluation of the Ergene River, Turkey, on mosquito fish, Gambussia affinis (Baird and Girard, 1853) using the piscine micronucleus assay, Int. J. Aquat. Biol., 2016, vol. 4, pp. 330–339. https://doi.org/10.22034/ijab.v4i5.171

10. Kumar, M.K., Avelyno, S., and Shyama, K., Genotoxic Biomarkers As Indicators of Marine Pollution, Marine Pollution and Microbial Remediation, Singapore: Springer, 2017, pp. 263–270. https://doi.org/10.1007/978-981-10-1044-6_17

11. Baršienė, J., Andreikėnaitė, L., and Bjornstad, A., Induction of micronuclei and other nuclear abnormalities in blue mussels Mytilus edulis after 1-, 2-, 4- and 8-day treatment with crude oil from the North Sea, Ekologija, 2010, vol. 56, nos. 3–4, pp. 124–131. https://doi.org/10.2478/v10055-010-0018-4

12. Fenech, M., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis, 2011, vol. 26, pp. 125–132. https://doi.org/10.1093/mutage/geq052

13. Andrade, V.M., Silva, J.D., Silva, F.R., Heuser, V.D., Dias, J.F., Yoneama, M.L., and Freitas, T.R., Fish as bioindicators to assess the effects of pollution in two southern Brazilian rivers using the Comet assay and micronucleus test, Environ. Mol. Mutagen., 2004, vol. 44, no. 5, pp. 459–468. https://doi.org/10.1002/em.20070

14. Boriollo, M.F., Resende, M.R., Silva, T.A., Publio, J.Yo., Souza, L.S., Dias, C.T., de Mello Silva Oliveira, N., and Fiorini, J.E., Evaluation of the mutagenicity and antimutagenicity of Ziziphus joazeiro Mart. bark in the micronucleus assay, Genet. Mol. Biol., 2014, vol. 37, no. 2, pp. 428–438.

15. Saleh, K. and Sarhan, M.A., Clastogenic analysis of chicken farms using micronucleus test in peripheral blood, J. Appl. Sci. Res., 2007, vol. 3, no. 12, pp. 1646–1649.

16. Martínez-Haro, M., Balderas-Plata, M.A., Pereda-Solís, M.E., Arellano-Aguilar, O., Hernández-Millán, C.L., Mundo-Hernández, V., and Torres-Bugarín, O., Anthropogenic influence on blood biomarkers of stress and genotoxicity of the burrowing owl (Athene cunicularia), J. Biodivers. Endanger. Species, 2017, vol. 5, no. 3, pp. 196–199. https://doi.org/10.4172/2332-2543.1000196

17. Wang, Q.L., Zhang, L.T., Zou, J.H., Liu, D.H., and Yue, J.Y., Effects of cadmium on root growth, cell division and micronuclei formation in root tip cells of Allium cepa var. agrogarum L., Fyton, 2014, vol. 83, pp. 291–298.

18. Kalaev, V., Artyukhov, V., and Nechaeva, M., Micronucleus test of human oral buccal epithelium: problems, progress and prospects, Cytol. Genet., 2014, vol. 48, no. 6, pp. 62–80. https://doi.org/10.3103/S0095452714060061

19. Belousov, M.V., Mashkina, O.S., and Popov, V.N., Cytogenetic response of Scots pine (Pinus sylvestris Linnaeus, 1753) (Pinaceae) to heavy metals, Comp. Cytogenet., 2012, vol. 6, no. 1, pp. 93–106. https://doi.org/10.3897/CompCytogen.v6i1

20. Gökalp, F.D. and Güner, U., Induction of micronuclei and nuclear abnormalities in erythrocytes of mosquito fish following exposure to the pyrethroid insecticide lambda-cyhalothrin, Mutat. Res./Genet. Toxicol. Environ. Mutagenesis, 2011, vol. 726, pp. 104–108. https://doi.org/10.1016/j.mrgentox.2011.05.004

21. Zhuleva, L.Yu. and Dubinin, N.P., Use of the micronucleus test for assessing the ecological situation in regions of the Astrakhan’ district, Genetika, 1994, vol. 30, no. 7, pp. 999–1004.

22. Korshikov, I.I., Tkacheva, Yu.A., and Privalikhin, S.N., Cytogenetic abnormalities in Norway spruce (Picea abies (L.) Karst.) seedlings from natural populations and an introduction plantation, Cytol. Genet., 2012, vol. 46, no. 5, pp. 280–284. https://doi.org/10.3103/S0095452712050064

23. Goryachkina, O.V. and Sizikh, O.A., Cytogenetical reactions of conifer trees in antropogenous disturbed regions of Krasnoyarsk and its environs, Khvoinye Boreal. Zony, 2012, vol. 30, nos. 1–2, pp. 46–51.

24. Belousov, M.V. and Mashkina, O.S., Cytogenetic response of Scots pine (Pinus sylvestris L.) to cadmium and nickel, Tsitologiia, 2015, vol. 57, no. 6, pp. 459–464.

25. Dubrovna, O.V., Cytogenetic effect of NaCl and Na2SO4 on the fodder beet callus culture, Fiziol. Biokhim. Kul’t. Rast., 2005, vol. 37, no. 1, pp. 30–39.

26. Kunakh, V.A., Mechanisms and some regularities to somaclonal variability of the plants, Visn. Ukr. Tovar. Henet. Selekts., 2003, vol. 1, no. 1, pp. 101–106.

27. Bonassi, S., Coskun, E., Ceppi, M., Lando, C., Bolognesi, C., Burgaz, S., and Fenech, M., The Human MicroNucleus project on exfoliated buccal cells: The role of lifestyle, host factors, occupational exposures, health status, and assay protocol, Mutat. Res./Rev. Mutat. Res., 2011, vol. 728, pp. 88–97. https://doi.org/10.1016/j.mrrev.2011.06.005

28. Torres-Bugarín, O., Pacheco-Gutiérrez, A.G., Vázquez-Valls, E., Ramos-Ibarra, M.L., and Torres-Mendoza, B.M., Micronuclei and nuclear abnormalities in buccal mucosa cells in patients with anorexia and bulimia nervosa, Mutagenesis, 2014, vol. 29, no. 6, pp. 427–431. https://doi.org/10.1093/MUTAGE/GEU044

29. Vergolyas, M.R., Lutsenko, T.V., and Goncharuk, V.V., Cytotoxic effect of chlorophenols on cells of the root meristem of Welsh onion (Allium fistulosum L.) seeds, Cytol. Genet., 2013, vol. 47, no. 1, pp. 34–38. https://doi.org/10.3103/S009545271

30. Fenech, M., Kirsch-Volders, M., Natarajan, A.T., Surralles, J., Crott, J.W., Parry, J., Norppa, H., Eastmond, D.A., Tucker, J.D., and Thomas, P., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis, 2011, vol. 26, no. 1, pp. 125–132. https://doi.org/10.1093/mutage/geq052

31. Luzhna, L., Kathiria, P., and Kovalchuk, O., Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond, Front. Genet., 2013, vol. 4, pp. 131–148. https://doi.org/10.3389/fgene.2013.00131

32. Korshikov, I.I., Lapteva, H.V., and Belonozhko, Yu.A., Pollen quality and cytogenetic changes of Scots pine as indicators of the effect of technogenic environmental pollution of Krivoy Rog, Contemp. Probl. Ecol., 2015, vol. 8, no. 2, pp. 250–255. https://doi.org/10.1134/S1995425515020109

33. Bajpai, A. and Singh, A.K., Meiotic Behavior of Carica papaya L.: spontaneous chromosome instability and elimination in important cvs. in North Indian conditions, Cytologia, 2006, vol. 71, no. 2, pp. 131–136. https://doi.org/10.1508/cytologia.71.131

34. Kalashnik, N.A., Chromosome aberrations as indicator of technogenic impact on conifer stands, Russ. J. Ecol., 2008, vol. 39, no. 4, pp. 261–271. https://doi.org/10.1134/S106741360804005X

35. Kovalchuk, O., Burke, P., Arkhipov, A., Kuchma, N., James, S.J., Kovalchuk, I., and Pogribny, I., Genome hypermethylation in Pinus silvestris of Chernobyla mechanism for radiation adaptation?, Mutat. Res., 2003, vol. 529, nos. 1–2, pp. 13–20. https://doi.org/10.1016/S0027-5107(03)00103-9

36. Korshikov, I.I., Lapteva, Ye.V., and Tkachova, Yu.A., Variation in quantitative dimensional characteristics of nucleoli and nuclei in seed cells of Pinus pallasiana D. Don (protected and human disturbed areas in the steppe zone of Ukraine), Ukr. Bot. J., 2013, vol. 70, no. 6, pp. 805–812.