TSitologiya i Genetika 2021, vol. 55, no. 5, 13-19
Cytology and Genetics 2021, vol. 55, no. 5, 414–419, doi: https://www.doi.org/10.3103/S0095452721050066

Mutation analysis of the PAH gene in Ukrainian population, a report from west Ukraine region

Makukh H.V., Chorna L.B., Tyrkus M.Ya., Akopyan H.R., Shuvarska V.I., Malakhova A.Y., Poliakova Ye.O.

  • State Institution «Institute of Hereditary Pathology of National Academy of Medical Sciences of Ukraine», 31-a, M. Lysenko Str., Lviv, Ukraine, 79008

SUMMARY. Phenylketonuria (PKU) is one of the most common autosomal recessive diseases caused by inherited defect in phenylalanine hydroxylase (PAH) that impairs po-stnatal cognitive development. Mutations in the PAH gene lead to complete or partial loss of PAH enzyme activity which cause to increasing phenylalanine se-rum level and phenotypic manifestations of PKU. In order to determine the PAH mutations spectrum in the population from the West region of Ukraine, 158 unrelated PKU patients were studied. 101 patients with hyperphenylalaninemia (HPA) were selected during the neonatal screening program. DNA from peripheral blood leukocytes was isolated and purified using a modified salting out method. A total of 316 alleles were studied by means of restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR, ACRS-PCR) method. The most prevalent mutation was R408W, occurring in 58.54 % of all alleles, with a very high degree of homozygosity (35.44 %). The frequencies of remaining identified mutations were: IVS10nt-11G>A (4.35 %), R158Q (4.17 %), Y414C (2.78 %) and R252W (1.25 %). The most common mutation in patients with PKU from the West region of Ukraine is R408W. The spectrum and frequency of mutations are correlated with the frequency in the general population of Ukraine and corresponded to the mutation spectrum in Eastern Europe.

Keywords: hyperphenylalaninemia, mutation, phenylalanine hydroxylase gene (PAH), phenylketonuria

TSitologiya i Genetika
2021, vol. 55, no. 5, 13-19

Current Issue
Cytology and Genetics
2021, vol. 55, no. 5, 414–419,
doi: 10.3103/S0095452721050066

Full text and supplemented materials

References

1. Blau, N., Shen, N., and Carducci, C., Molecular genetics and diagnosis of phenylketonuria: state of the art, Expert Rev. Mol. Diagn., 2014, vol. 6, pp. 655–671. https://doi.org/10.1586/14737159.2014.923760

2. DiLella, A.G., Marvit, J., Brayton, K., et al., An amino-acid substitution involved in phenylketonuria is in linkage disequilibrium with DNA haplotype 2, Nature, 1987, vol. 327, pp. 333–338. https://doi.org/10.1038/327333a0

3. Eiken, H.G., Odland, E., Boman, H., et al., Application of natural and amplification created restriction sites for the diagnosis of PKU mutations, Nucleic Acids Res., 1991, vol. 19, pp. 1427–1430. https://doi.org/10.1093/nar/19.7.1427

4. Erlandsen, H. and Stevens, R.C., The structural basis of Phenylketonuria, Mol. Genet. Metab., 1999, vol. 68, pp. 103–125. https://doi.org/10.1006/mgme.1999.2922

5. Guldberg, P., Rey, F., Zschocke, J., et al., A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype, Am. J. Hum. Genet., 1998, vol. 63, pp. 71–79. doi 10.1086/301920

6. Hoang, L., Byck, S., Prevost, et al., PAH mutation analysis Consortium Database: a database for disease-producing and other allelic variation at the human PAH locus, Nucleic Acids Res., 1999, vol. 24, no. 1, pp. 127–131. https://doi.org/10.1093/nar/24.1.127

7. Kaufman, S., Berlow, S., Summer, G.K., et al., Hyperphenylalaninemia due to a deficiency of biopterin. A variant form of Phenylketonuria, N. Engl. J. Med., 1978, vol. 299, no. 13, pp. 673–679. https://doi.org/10.1056/NEJM19780928 2991301

8. Kayaalp, E., Treacy, E., Waters, P.J., et al., Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype-phenotype correlations, Am. J. Hum. Genet., 1997, vol. 61, pp. 1309–1317. https://doi.org/10.1086/301638

9. Longo, N., Arnold, G.L., Pridjian, G., et al., Long-term safety and efficacy of sapropterin: the PKUDOS registry experience, Mol. Genet. Metab., 2015, vol. 114, pp. 557–563. https://doi.org/10.1016/j.ymgme.2015.02.003

10. Okano, Y., Eisensmith, R.C., Güttler, F., et al., Molecular basis of phenotypic heterogeneity in Phenylketonuria, N. Eng. J. Med., 1991, vol. 324, pp. 1232–1238. https://doi.org/10.1056/NEJM199105023241802

11. O’Neill, C.A., Eisensmith, R.C., Croke, D.T., et al., Molecular analysis of PKU in Ireland, Acta Paediatr. Suppl., 1994, vol. 407, pp. 43–44. https://doi.org/10.1111/j.1651-2227.1994.tb 13448.x

12. Pampukha, V., Nechyporenko, M., and Livshyts, L., Ana-lysis of EX5del4232ins268 and EX5del955 PAH gene mutations in Ukrainian patients with Phenylketonuria, Genes Dis., 2017, vol. 4, no. 2, pp. 108–110. https://doi.org/10.1016/j.gendis.2016.11.004

13. Pey, A.L., Stricher, F., Serrano, L., et al., Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases, Am. J. Hum. Genet., 2007, vol. 81, pp. 1006–1024. https://doi.org/10.1086/521879

14. Réblová, Kl., Hrubá, Z., Procházková, D., et al., Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations, Clin. Chim. Acta, 2013, vol. 419, pp. 1–10. https://doi.org/10.1016/j.cca.2013.01.006

15. Scriver, C.R., The PAH gene, phenylketonuria, and a paradigm shift, Hum. Mutat., 2007, vol. 28, no. 9, pp. 831–845. https://doi.org/10.1002/humu.20526

16. Scriver, C.R. and Kaufman, S., Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. The metabolic and molecular bases of inherited disease, OMMBID, 2001, vol. 8, pp. 1667–1724. https://doi.org/10.1036/Ommbid.97

17. Singh, R.H., Rohr, F., Frazier, D., et al., Recommendations for the nutrition management of phenylalanine hydroxylase deficiency, Genet. Med., 2014, vol. 16, no. 2, pp. 121–131. https://doi.org/10.1038/gim.2013.179

18. Tighe, O., Dunican, D., O’Neill, C., et al., Genetic diversity within the R408W phenylketonuria mutation lineages in Europe, Hum. Mutat., 2003, vol. 21, pp. 387–393. https://doi.org/10.1002/humu.10195

19. Van Spronsen, F.J., van Wegberg, A.M.J., Ahring, K., et al., Key European guidelines for the diagnosis and management of patients with phenylketonuria, Lancet Diabetes Endocrinol., 2017, vol. 5, no. 9, pp. 743–756. https://doi.org/10.1016/S2213-8587(16)30320-5

20. Van Wegberg, A.M.J., MacDonald, A., Ahring, K., et al., The complete European guidelines on phenylketonuria: diagnosis and treatment, Orphanet J. Rare Dis., 2017, vol. 12, no. 1, p. 162. https://doi.org/10.1186/s13023-017-0685-2

21. Vockley, J., Anderson, H.C., Antshel, K.M., et al., Phenylalanine hydroxylase deficiency: diagnosis and management guideline, Genet. Med., 2014, vol. 16, pp. 188–200. https://doi.org/10.1038/gim.2013.157

22. Woo, S.L., Lidsky, A.S., Guttler, F., et al., Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria, Nature, 1983, vol. 306, pp. 151–155. https://doi.org/10.1038/306151a0

23. Zekanowski, C., Nowacka, M., Zgulska, M., et al., Frequencies of the most common mutations responsible for phenylketonuria in Poland, Mol. Cell Probes, 1994, vol. 8, pp. 323–324. https://doi.org/10.1006/mcpr.1994.1044

24. Zschocke, J., Graham, C.A., Carson, D.J., and Nevin, N.C., Phenylketonuria mutation analysis in Northern Ireland: a rapid stepwise approach, Am. J. Hum. Genet., 1995, vol. 57, pp. 1311–1317.

25. Zschocke, J., Phenylketonuria mutations in Europe, Hum. Mutat., 2003, vol. 21, no. 4, pp. 345–356. https://doi.org/10.1002/humu.10192

26. Zurflüh, M.R., Zschocke, J., Lindner, M., et al., Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency, Hum. Mutat., 2008, vol. 29, no. 1, pp. 167–175. https://doi.org/10.1002/humu.20637