TSitologiya i Genetika 2021, vol. 55, no. 6, 51-59
Cytology and Genetics 2021, vol. 55, no. 6, 540–547, doi: https://www.doi.org/10.3103/S0095452721060098

Hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Tisa river drainage: its origin and evolutionary potential

Morozov-Leononv S.Yu.

  • I.I. Schmalhausen Institute of Zoology, B. Khmelnitskogo str., Kiev-30, 01601 Ukraine

SUMMARY. The genetic variability of the hybrid form Pelophylax esculentus-ridibundus and its parental species (P. ridibundus) of the Tisza River basin  was analyzed. The decrease in the level of the inherited genome variability within the hybrid form in comparison with the parental species was demonstrated. A more significant divergence between the hybrid form samples than between the marsh frog samples was found. No correlation was found between the species composition of the hybrid population of the population and the level of genetic variability of the hybrid form. The evolutionary perspectives of clonal and hemiclonal forms of hybrid origin are discussed.

Keywords: i>Pelophylax, hybrid form, hemiclone diversity, hemiclonal inheritance, evolutionary potential

TSitologiya i Genetika
2021, vol. 55, no. 6, 51-59

Current Issue
Cytology and Genetics
2021, vol. 55, no. 6, 540–547,
doi: 10.3103/S0095452721060098

Full text and supplemented materials

References

1. Bittebiere, A.C., Benot, M.L., and Mony, C., Clonality as a key but overlooked driver of biotic interactions in plants, PPEES, 2020. https://doi.org/10.1016/j.ppees.2020.125510

2. Christiansen, D.G. and Reyer, H.-U., Effects of geographic distance, sea barriers and habitat on the genetic structure and diversity of all-hybrid water frog populations, Heredity, 2011. https://doi.org/10.1038/hdy.2010.37

3. Dietz, H. and Steinlein, T., Ecological aspects of clonal growth in plants, in Progress in Botany, Esser, K., Luttge, U., Kadereit, J.W., and Beyschlag, W., Eds., Berlin: Springer, 2001, vol. 62. https://doi.org/10.1007/978-3-642-56849-7_20

4. Girnyk, A.E., Vergun, A.A., Semyenova, S.K., Guliaev, A.S., Arakelyan, M.A., Danielyan, F.D., Martirosyan, I.A., Murphy, R.W., and Ryskov, A.P., Multiple interspecific hybridization and microsatellite mutations provide clonal diversity in the parthenogenetic rock lizard Darevskia armeniaca, BMC Genomics, 2018. https://doi.org/10.1186/s12864-018-5359-5

5. Hotz, H., Guex, G.-D., Beerli, P., Semlitsch, R.D., and Pruvost, N.B.M., Hemiclone diversity in the hyb-ridogenetic frog Rana esculenta outside the area of clone formation: the view from protein electrophoresis, J. Zool. Syst. Evol. Res., 2008. https://doi.org/10.1111/j.1439-0469.2007.00430.x

6. Lakin, G.F., Biometrics. Study Guide for Biol. Specialist. Universities, 4th ed., Moscow: Higher School, 2008.

7. Leuenberger, J., Gander, A., Schmidt, B.R., and Perrin, N., Are invasive marsh frogs (Pelophylax ridibundus) replacing the native P. lessonae/P. esculentus hybridogenetic complex in Western Europe?, Genetic evidence from a field study, Conserv. Genet., 2014. https://doi.org/10.1007/s10592-014-0585-0

8. Lokki, J., Suomalainen, E., Saura, A., and Lankinen, P., Genetic polymorphism and evolution in parthenogenetic animals. II. Diploid and polyploid Solenobia triquetrella (Lepidoptera: Psychidae), Genetics, 1975, vol. 79, no. 3, pp. 513–525.

9. Mezhzherin, S.V. and Peskov, V.N., Biochemical variability and genetic differentiation of the marsh frog Rana ridibunda Pall. populations, Cytol. Genet., 1992, vol. 26, no. 1, pp. 43–48.

10. Morozov-Leonov, S.Y., Hemiclone diversity in the hybrid form Pelophylax esculentus–ridibundus (Amphibia, Ranidae) from the Tisa River drainage, Cytol. Genet., 2017.https://doi.org/10.3103/S0095452717060093

11. Morozov-Leonov, S.Y., Hemiclone diversity in the hybrid form Pelophylax esculentus–ridibundus (Amphibia, Ranidae) from the Prypyat, Dnestr, and Southern Boug River basins, Cytol. Genet., 2019.https://doi.org/10.3103/S0095452719010092

12. Morozov-Leonov, S.Yu., Evolutionary potential of the hybrid form Pelophylax esculentus–ridibundus (Amphibia, Ranidae) within Dnieper and Desna drainages: its loss caused by the hemiclonal inheritance and the compensatory role of parental genomes’ recombination, Cytol. Genet., 2021, vol. 55, no. 3, pp. 213–226. https://doi.org/10.3103/S0095452721030063

13. Morozov-Leonov, S.Ju., Mezhzherin, S.V., and Kurtyak, Th.Th., The genetic structure of the unisex hybrid Rana esculenta complex populations in the Transcarpathians lowland, Cytol. Genet., 2003, vol. 37, no. 1, pp. 43–47.

14. Nei, M. and Roychoudhury, A.K., Sampling variances of heterozygosity and genetic distance, Genetics, 1974, vol. 76, no. 2, pp. 379–390.

15. Normark, B.B., The evolution of alternative genetic systems in insects, Annu. Rev. Entomol., 2002. https://doi.org/10.1146/annurev.ento.48.091801.112703

16. Pagano, A., Lesbarreres, D., O’Hara, R., Crivelli, A., Veith, M., Lode, T., and Schmeller, D.S., Geographical and ecological distributions of frog hemiclones suggest occurrence of both ‘General-Purpose Genotype’ and ‘Frozen Niche Variation’ clones, J. Zool. Syst. Evol. Res., 2008. https://doi.org/10.1111/j.1439-0469.2007.00439.x

17. Stenberg, P., Lundmark, M., Knutelski, S., and Saura, A., Evolution of clonality and polyploidy in a weevil system, Mol. Biol. Evol., 2003. https://doi.org/10.1093/molbev/msg180

18. Suomalainen, E. and Saura, A., Genetic polymorphism and evolution in parthenogenetic animals. I. Polyploid Curculionidae, Genetics, 1973, vol. 74, no. 3, pp. 489–508.

19. Van Drunen, W.E. and Husband, B.S., Evolutionary associations between polyploidy, clonal reproduction, and perenniality in the angiosperms, New Phytol., 2019. https://doi.org/10.1111/nph.15999

20. Vorburger, Ch., Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs, Evolution, 2001a. https://doi.org/10.1111/j.0014-3820.2001.tb00745.x

21. Vorburger, Ch., Non-hybrid offspring from matings between hemiclonal hybrid waterfrogs suggest occasional recombination between clonal genomes, Ecol. Lett., 2001b. https://doi.org/10.1046Xj.1461-0248.2001.00272.x

22. Vorburger, Ch. and Reyer, H.-U., A genetic mechanism of species replacement in European water-frogs?, Conserv. Genet., 2003. https://doi.org/10.1023/A:1023346824722

23. Vrijenhoek, R.C., Angus, R.A., and Schultz, R.J., Variation and heterozygosity in sexually vs. clonally reproducing populations of Poeciliopsis, Evolution, 1977. https://doi.org/10.2307/2407438

24. Yang, Y.Y. and Kim, J.G., The optimal balance between sexual and asexual reproduction in variable environments: a systematic review, J. Ecol. Environ., 2016. https://doi.org/10.1186/s41610-016-0013-0