Проаналізовано генетичну мінливість гібридної форми Pelophylax esculentus-ridibundus басейну річки Тиса та її батьківського виду (P. ridibundus). Виявлено зниження рівня мінливості успадкованого генома гібридної форми в порівнянні з батьківським видом та більш значну дивергенцію вибірок гібридної форми, ніж вибірок озерної жаби. Продемонстровано відсутність кореляції між видовим складом гібридної популяції і рівнем генетичної мінливості гібридної форми. Обговорюються еволюційні перспективи клональних і напівклональних форм гібридного походження.
Ключові слова: Pelophylax, гібридна форма, напівклональна мінливість, напівклональне успадкування, еволюційний потенціал
Повний текст та додаткові матеріали
Цитована література
1. Bittebiere, A.C., Benot, M.L., and Mony, C., Clonality as a key but overlooked driver of biotic interactions in plants, PPEES, 2020. https://doi.org/10.1016/j.ppees.2020.125510
2. Christiansen, D.G. and Reyer, H.-U., Effects of geographic distance, sea barriers and habitat on the genetic structure and diversity of all-hybrid water frog populations, Heredity, 2011. https://doi.org/10.1038/hdy.2010.37
3. Dietz, H. and Steinlein, T., Ecological aspects of clonal growth in plants, in Progress in Botany, Esser, K., Luttge, U., Kadereit, J.W., and Beyschlag, W., Eds., Berlin: Springer, 2001, vol. 62. https://doi.org/10.1007/978-3-642-56849-7_20
4. Girnyk, A.E., Vergun, A.A., Semyenova, S.K., Guliaev, A.S., Arakelyan, M.A., Danielyan, F.D., Martirosyan, I.A., Murphy, R.W., and Ryskov, A.P., Multiple interspecific hybridization and microsatellite mutations provide clonal diversity in the parthenogenetic rock lizard Darevskia armeniaca, BMC Genomics, 2018. https://doi.org/10.1186/s12864-018-5359-5
5. Hotz, H., Guex, G.-D., Beerli, P., Semlitsch, R.D., and Pruvost, N.B.M., Hemiclone diversity in the hyb-ridogenetic frog Rana esculenta outside the area of clone formation: the view from protein electrophoresis, J. Zool. Syst. Evol. Res., 2008. https://doi.org/10.1111/j.1439-0469.2007.00430.x
6. Lakin, G.F., Biometrics. Study Guide for Biol. Specialist. Universities, 4th ed., Moscow: Higher School, 2008.
7. Leuenberger, J., Gander, A., Schmidt, B.R., and Perrin, N., Are invasive marsh frogs (Pelophylax ridibundus) replacing the native P. lessonae/P. esculentus hybridogenetic complex in Western Europe?, Genetic evidence from a field study, Conserv. Genet., 2014. https://doi.org/10.1007/s10592-014-0585-0
8. Lokki, J., Suomalainen, E., Saura, A., and Lankinen, P., Genetic polymorphism and evolution in parthenogenetic animals. II. Diploid and polyploid Solenobia triquetrella (Lepidoptera: Psychidae), Genetics, 1975, vol. 79, no. 3, pp. 513–525.
9. Mezhzherin, S.V. and Peskov, V.N., Biochemical variability and genetic differentiation of the marsh frog Rana ridibunda Pall. populations, Cytol. Genet., 1992, vol. 26, no. 1, pp. 43–48.
10. Morozov-Leonov, S.Y., Hemiclone diversity in the hybrid form Pelophylax esculentus–ridibundus (Amphibia, Ranidae) from the Tisa River drainage, Cytol. Genet., 2017.https://doi.org/10.3103/S0095452717060093
11. Morozov-Leonov, S.Y., Hemiclone diversity in the hybrid form Pelophylax esculentus–ridibundus (Amphibia, Ranidae) from the Prypyat, Dnestr, and Southern Boug River basins, Cytol. Genet., 2019.https://doi.org/10.3103/S0095452719010092
12. Morozov-Leonov, S.Yu., Evolutionary potential of the hybrid form Pelophylax esculentus–ridibundus (Amphibia, Ranidae) within Dnieper and Desna drainages: its loss caused by the hemiclonal inheritance and the compensatory role of parental genomes’ recombination, Cytol. Genet., 2021, vol. 55, no. 3, pp. 213–226. https://doi.org/10.3103/S0095452721030063
13. Morozov-Leonov, S.Ju., Mezhzherin, S.V., and Kurtyak, Th.Th., The genetic structure of the unisex hybrid Rana esculenta complex populations in the Transcarpathians lowland, Cytol. Genet., 2003, vol. 37, no. 1, pp. 43–47.
14. Nei, M. and Roychoudhury, A.K., Sampling variances of heterozygosity and genetic distance, Genetics, 1974, vol. 76, no. 2, pp. 379–390.
15. Normark, B.B., The evolution of alternative genetic systems in insects, Annu. Rev. Entomol., 2002. https://doi.org/10.1146/annurev.ento.48.091801.112703
16. Pagano, A., Lesbarreres, D., O’Hara, R., Crivelli, A., Veith, M., Lode, T., and Schmeller, D.S., Geographical and ecological distributions of frog hemiclones suggest occurrence of both ‘General-Purpose Genotype’ and ‘Frozen Niche Variation’ clones, J. Zool. Syst. Evol. Res., 2008. https://doi.org/10.1111/j.1439-0469.2007.00439.x
17. Stenberg, P., Lundmark, M., Knutelski, S., and Saura, A., Evolution of clonality and polyploidy in a weevil system, Mol. Biol. Evol., 2003. https://doi.org/10.1093/molbev/msg180
18. Suomalainen, E. and Saura, A., Genetic polymorphism and evolution in parthenogenetic animals. I. Polyploid Curculionidae, Genetics, 1973, vol. 74, no. 3, pp. 489–508.
19. Van Drunen, W.E. and Husband, B.S., Evolutionary associations between polyploidy, clonal reproduction, and perenniality in the angiosperms, New Phytol., 2019. https://doi.org/10.1111/nph.15999
20. Vorburger, Ch., Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs, Evolution, 2001a. https://doi.org/10.1111/j.0014-3820.2001.tb00745.x
21. Vorburger, Ch., Non-hybrid offspring from matings between hemiclonal hybrid waterfrogs suggest occasional recombination between clonal genomes, Ecol. Lett., 2001b. https://doi.org/10.1046Xj.1461-0248.2001.00272.x
22. Vorburger, Ch. and Reyer, H.-U., A genetic mechanism of species replacement in European water-frogs?, Conserv. Genet., 2003. https://doi.org/10.1023/A:1023346824722
23. Vrijenhoek, R.C., Angus, R.A., and Schultz, R.J., Variation and heterozygosity in sexually vs. clonally reproducing populations of Poeciliopsis, Evolution, 1977. https://doi.org/10.2307/2407438
24. Yang, Y.Y. and Kim, J.G., The optimal balance between sexual and asexual reproduction in variable environments: a systematic review, J. Ecol. Environ., 2016. https://doi.org/10.1186/s41610-016-0013-0