TSitologiya i Genetika 2021, vol. 55, no. 2, 75-76
Cytology and Genetics 2021, vol. 55, no. 2, 183–187, doi: https://www.doi.org/10.3103/S0095452721020092

Сharacterization of the complete chloroplast genome of Meconopsis puniceA (Papaveraceae), an endemic species from the Qinghai­Tibet plateau in China

Liang R., Caraballo­Ortiz M.A., Liu Y., Su X.

  1. Key Laboratory of Medicinal Plant and Animal Resources in the Qinghai­Tibetan Plateau, School of Life Science, Qinghai Normal University, Xining 810008, China
  2. Key Laboratory of Physical Geography and Environmental Process in Qinghai Province, Qinghai Normal University, Xining 810008, China
  3. Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013­7012, USA
  4. Key Laboratory of Education Ministry of Environments and Resources in the Qinghai­Tibetan Plateau, Qinghai Normal University, Xining 810008, China

Meconopsis punicea Maxim. (Papaveraceae) is an alpine perennial herb endemic to the Qinghai­Tibet Plateau in southwestern China. In this study, we sequenced and analyzed its whole chloroplast genome using an Illumina HiSeq platform. This represents the second complete chloroplast genome for a species of Meconopsis after the recent publication of a first one (M. racemosa) in 2018. Our result shows that the chloroplast genome of M. punicea is 153,260 bp in length with a relatively high A + T content (61.5 %), and had a standard quadriparti­te structure with the large (LSC, 84,122 bp) and small (SSC, 17,730 bp) single copy regions separated by two copies of an inverted repeat (IRs, 25,704 bp each). The chloroplast genome encoded a total of 110 genes, including 78 protein­coding genes, 29 tRNAs genes and three rRNAs genes. The majority (94) of genes occur within the single copy regions. When comparing these results to the previously published chloroplast genome of M. racemosa, both species share similar gene type, number and G + C content. In addition, the maximum likelihood phylogenetic analysis based on 33 chloroplast genomes suggested that M. punicea is basal in the Meconopsis clade within Papaveraceae.

Keywords: Papaveraceae; Meconopsis punicea; Chloroplast genome; Illumina sequencing; Phylogenetic analysis; Qinghai­Tibet Plateau

TSitologiya i Genetika
2021, vol. 55, no. 2, 75-76

Current Issue
Cytology and Genetics
2021, vol. 55, no. 2, 183–187,
doi: 10.3103/S0095452721020092

Full text and supplemented materials


1. Bendich, A.J., Circular chloroplast chromosomes: the grand illusion, Plant Cell, 2004, vol. 16, no. 7, pp. 1661–1666.

2. Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, no. 15, pp. 2114–2120.

3. Dierckxsens, N., Mardulyn, P., and Smits, G., Novoplasty: de novo assembly of organelle genomes from whole genome data, Nucleic Acids Res., 2017, vol. 45, no. 4. e18.

4. Doyle, J.J. and Doyle, J.L., Isolation of plant DNA from fresh tissue, Focus, 1990, vol. 12, no. 1, pp. 13–15.

5. Greiner, S., Lehwark, P., and Bock, R., OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes, bioRxiv, 2019, p. 545509.

6. Jung, J., Kim, J.I., Jeong, Y.S., et al., AGORA: organellar genome annotation from the amino acid and nucleotide references, Bioinformatics, 2018, vol. 34, no. 15, pp. 2661–2663.

7. Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772–780.

8. Liu, Q.R., Meconopsis punicea Maxim., Bull. Biol., 2015, vol. 50, no. 12, p. 16.

9. Liu, Y.S., Gao, L.Y., Wang, H., et al., The current status of Meconopsis punicea Maxim., Modern Hortic., 2012, vol. 6, p. 14.

10. Liu, Y.P., Lv, T., Zhu, D., et al., Sequencing and alignment analysis of the complete chloroplast genome of Littledalea tibetica, an endemic species from the Qinghai–Tibet Plateau, Bull. Bot. Res., 2018, vol. 38, no. 5, pp. 518–525.

11. Morris, L.M. and Duvall, M.R., The chloroplast genome of Anomochloa marantoidea (Anomochlooideae; Poaceae) comprises a mixture of grass-like and unique features, Am. J. Bot., 2010, vol. 97, no. 4, pp. 620–627.

12. Ren, Z.S., The effects of climate on the growth of Meconopsis seedling in Kunming, Acta Bot. Yunnan., 1993, vol. 15, no. 1, pp. 110–112.

13. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, no. 9, pp. 1312–1313.

14. Tillich, M., Lehwark, P., Pellizzer, T., et al., GeSeq—versatile and accurate annotation of organelle genomes, Nucleic Acids Res., 2017, vol. 45, no. W1, pp. W6–W11.

15. Wu, F.H., Kan, D.P., Lee, S.B., et al., Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes, Tree Physiol., 2009, vol. 29, no. 6, pp. 847–856.

16. Wu, Z.Y., Flora of China, Beijing: Science Press, 1999, vol 32.

17. Wu, H.F., Song, Z.J., Zhu, H.J., et al., Chemical constituents of Meconopsis punicea, Nat. Prod. Res. Dev., 2011, vol. 23, no. 2, pp. 202–207.

18. Zeng, C.X., Hollingsworth, P.M., Yang, J., et al., Genome skimming herbarium specimens for DNA barcoding and phylogenomics, Plant Methods, 2018, vol. 14, p. 43.

19. Zhao, Q.S., Treasured alpine flowers