Цитологія і генетика 2019, том 53, № 6, 79-82
Cytology and Genetics 2019, том 53, № 6, 494–501, doi: https://www.doi.org/10.3103/S0095452719060057

Phenolic com-pounds of Codiaeum varie-gatum spirale lessened cytotoxic and genotoxic effects of mitomycin C in mice somatic and germ cells

MONA A.M. ABO-ZEID, AYMAN A. FARG-HALY, EMAD M. HASSAN, NEGM S. ABDEL-SAMIE

  • Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki 12622, Cairo, Egypt
  • Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research division, National Research Centre, Dokki 12622, Cairo, Egypt

РЕЗЮМЕ. У цьому дослідженні було оцінено хіміопрофілактичні властивості фенольних сполук, отриманих з Codiaeum variegatum (PCCV), проти цитотоксичного та генотоксичного впливу мітоміцину C (MMC). Самцям Swiss albino вводили PCCV та/або MMC, і збирали зразки через 24 години після останнього введення. Було зафіксовано хромосомні аберації у клітинах кісткового мозку та сперматоцитах, життєздатність клітин та пошкодження ДНК (за допомогою кометного аналізу) у клітинах кісткового мозку. Згідно з нашими спостереженнями найвища концентрація PCCV не чинила цитотоксичний чи генотоксичний вплив на соматичні та зародкові клітини мишей. Однак MMC суттєво знизила проліферацію клітин (p<0,05), і значно збільшила хромосомні аберації та пошкодження ДНК. Крім того, PCCV перешкоджає цитотоксичності та генотоксичності MMC при введенні тваринам за 2 години до введення MMC. Очевидно, PCCV спричиняє значне пригнічення (p<0,05) відсоткового відношення хромосомних аберацій у клітинах кісткового мозку, за винятком розривів (19,82%, 25,23% та 42,34%), і сперматоцитах (22,73%, 31,82% та 48,48%) у концентрації 125, 250 та 500 мг/кг маси тіла, відповідно. Подібним чином, PCCV знизив відсоток ДНК у хвості (%), довжину хвоста (мкм) і хвостовий момент, а інгібіторний індекс відсотку ДНК у хвості (%) досяг 89,44% при 500 мг/кг маси тіла. Крім того, фенольні сполуки Codiaeum variegatum зменшили цитотоксичний та генотоксичний вплив, спричинений мутагенним агентом MMC.

Ключові слова: Codiaeum variegatum; фенольні сполуки; цитотоксичність; генотоксичність; хромосомні аберації; кометний аналіз

Цитологія і генетика
2019, том 53, № 6, 79-82

Current Issue
Cytology and Genetics
2019, том 53, № 6, 494–501,
doi: 10.3103/S0095452719060057

Повний текст та додаткові матеріали

Цитована література

1. Bingtao, L. and Esser, H., Flora of China, Missouri Botanical Garden Press, Beijing, China: Bingotao and Esser, 2008, vol. 11, p. 258.

2. Saffoon, N., Uddin, R., Subhan, N., Hossain, H., Reza, M., and Alam, A., In vitro anti-oxidant activity and HPLC-DAD system based phenolic content analysis of Codiaeum variegatum found in Bangladesh, Adv. Pharm. Bull., 2014, vol. 4, no. 2, pp. 533–554.

3. Monzon, R.B., Alvior, J.P., Luczon, L.L., Morales, A.S., and Mutuc, F.E., Larvicidal potential of five Philippine plants against Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say), Southeast Asian J. Trop. Med. Public Health, 1994, vol. 25, pp. 755–759.

4. Billo, M., Cabalion, P., Waikedre, J., Fourneau, C., Bouttier, S., Hocquemiller, R., and Fournet, A., Screening of some new Caledonian and vanuatu medicinal plants for antimycobacterial activity, J. Ethnopharmacol., 2005, vol. 96, pp. 195–200.

5. Gautam, R., Saklani, A., and Jachak, S., Indian medicinal plants as a source of antimycobacterial agents, J. Ethnopharmacol., 2007, vol. 110, pp. 200–234.

6. Forero, J.E., Avila, L., Taborda, N., Tabares, P., Lopez, A., Torres, F., Quinones, W., Bucio, M.A., Mora-Perez, W., Rugeles, M.T., Joseph-Nathan, P., and Echeverri, F., In vitro anti-influenza screening of several Euphorbiaceae species: structure of a bioactive cyanoglucoside from Codiaeum variegatum,Phytochemistry, 2008, vol. 69, pp. 2815–2819.

7. Block, G., Patterson, B., and Subar, A., Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence, Nutr. Cancer, 1992, vol. 18, pp. 1–29.

8. Powles, J.W. and Ness, A.R., Fruit and vegetables, and cardiovascular disease: a review, Int. J. Epidemiol., 1996, vol. 26, pp. 1–13.

9. Robbins, R.J., Phenolic acids in foods: an overview of analytical methodology, J. Agric. Food Chem., 2003, vol. 51, pp. 2866–2887.

10. Procházková, D., Boušová, I., and Wilhelmová, N., Antioxidant and prooxidant properties of flavonoids, Fitoterapia, 2011, vol. 82, pp. 513–523.

11. Kumar, S. and Pandey, A.K., Chemistry and biological activities of flavonoids: an overview, Sci. World J., 2013, p. 162750.

12. Chen, X-M., Tait, A.R., and Kitts, D.D., Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities, Food Chem., 2017, vol. 218, pp. 15–21.

13. Loarca-Piña, G., Kuzmicky, P.A., Gonzalez de Mejia, E., Kado, N.Y., and Hsieh, D.P.H., Anti-mutagenicity of ellagic acid against aflatoxin B1 in the Salmonella microsuspension assay, Mutat. Res., 1996, vol. 60, pp. 15–21.

14. de Mejia, E., Castaño-Tostado, E., and Loarca-Piña, G., Anti-mutagenic effects of natural phenolic compounds in beans, Mutat. Res., 1999, vol. 441, pp. 1–9.

15. Gerardi, C., Frassinetti, S., Caltavuturo, L., Leone, A., Lecci, R., Calabriso, N., Carluccio, M.A., Blando, F., and Mita, G., Anti-proliferative, anti-inflammatory and anti-mutagenic activities of a Prunus mahaleb L. anthocyanin-rich fruit extract, J. Funct. Foods, 2016, vol. 27, pp. 537–548.

16. Wakaki, S., Marumo, H., Tomioka, K., Shimizu, G., Kato, E., Kamada, H., Kudo, S., and Fujimoto, Y., Isolation of new fractions of antitumor mitomycins, Antibiot. Chemother., 1958, vol. 8, no. 5, pp. 228–240.

17. Asche, C., Antitumour quinones, Mini Rev. Med. Chem., 2005, vol. 5, no. 5, pp. 449–467.

18. Workman, P. and Stratford, I.J., The experimental development of bioreductive drugs and their role in cancer therapy, Cancer Metastasis Rev., 1993, vol. 12, no. 2, pp. 73–82.

19. Na, Y., Li, V.-S., Nakanishi, Y., Bastow, K.F., and Kohn, H., Synthesis, DNA cross-linking activity, and cytotoxicity of dimeric mitomycins, J. Med. Chem., 2001, vol. 44, no. 21, pp. 3453–3462.

20. Wang, S.-L., Han, J.-F., He, X.-Y., Wang, X.-R., and Hong, J.-Y., Genetic variation of human cytochrome P450 reductase as a potential biomarker for mitomycin C-induced cytotoxicity, Drug Metab. Dispos., 2007, vol. 35, no. 1, pp. 176–179.

21. Dorr, R.T., New findings in the pharmacokinetic, metabolic, and drug-resistance aspects of mitomycin C, Semin. Oncol., 1988, vol. 15, no. 3, pp. 32–41.

22. Gustafson, D.L. and Pritsos, C.A., Oxygen radical generation and alkylating ability of mitomycin C bioactivated by xanthine dehydrogenase, Proc. West. Pharmacol. Soc., 1992, vol. 35, pp. 147–151.

23. Siddique, Y.H. and Afzal, M., Antigenotoxic effect of apigenin against mitomycin C induced genotoxic damage in mice bone marrow cells, Food Chem. Toxicol., 2009, vol. 47, pp. 536–539.

24. Rjiba-Touati, K., Ayed-Boussema, I., Guedri, Y., Achour, A., Bacha, H., and Abid, S., Role of recombinant human erythropoietin in mitomycin C-induced genotoxicity: analysis of DNA fragmentation, chromosome aberrations and micronuclei in rat bone-marrow cells, Mutat. Res., 2013, vol. 753, pp. 48–53.

25. Silva, C.A., Silva, C.R., Veras, J.H., Chen-Chen, L., Ferri, P.H., and Santos, S., Genotoxicity and cytotoxicity evaluation of oenothein B and its protective effect against mitomycin C-induced mutagenic action, Mutat. Res., 2014, vol. 767, pp. 8–12.

26. Bzeouich, I.M., Mustapha, N., Maatouk, M., Ghedira, K., Ghoul, M., and Chekir-Ghedira, L., Genotoxic and anti-genotoxic effects of esculin and its oligomer fractions against mitomycin C-induced DNA damages in mice, Regul. Toxicol. Pharmacol., 2016, vol. 82, pp. 48–52.

27. Hassan, E.M., Hassan, R.A., El-Toumy, S.A., Mohamed, S.M., and Omer, E.A., Phenolic metabolites and antioxidant activity of Codiaeum variegatum CV. spirale, J. Pharm. Res., 2014, vol. 8, no. 5, pp. 619–623.

28. Yosida, T.H. and Amano, K., Autosomal polymorphism in laboratory bred and wild Norway rats, Rattus norvegicus, found in Misima, Chromosoma, 1965, vol. 16, pp. 658–667.

29. Evans, E.P., Breckon, G., and Ford, C.E., An air-drying method for meiotic preparations from mammalian testes, Cytogenetics, 1964, vol. 3, pp. 289–94.

30. Schlormann, W. and Glei, M., Comet fluorescence in situ hybridization (Comet-FISH): detection of DNA damage, Cold Spring Harb. Protoc., 2009, vol. 5. pdb.prot5220.

31. Madrigal-Bujaidar, E., Diaz, BarrigaS., Cassani, M., Marquez, P., and Revuelta, P., In vivo and in vitro antigenotoxic effect of nordihydroguaiaretic acid against SCEs induced by methyl methanesulfonate, Mutat. Res., 1998, vol. 419, pp. 163–168.

32. Shams, A., Mehrabian, S., and Irian, S., Assessing the antioxidant and anticarcinogenic activities of virgin olive oil and purified olive oil samples treated with light and heat using the Ames test, Int. J. Microbiol. Res., 2012, vol. 4, pp. 173–177.

33. Zahin, M., Aqil, F., and Ahmad, I., Broad spectrum anti-mutagenic activity of antioxidant active fraction of Punica granatum L. peel extract, Mutat. Res., 2010, vol. 703, no. 2, pp. 99–107.

34. Njoya, E.M., Moundipa, P.F., and Stopper, H., In vitro genotoxic and mutagenic evaluation of the aqueous extract of Codiaeum variegatum and its amoebicidal subfraction, J. Ethnopharmacol., 2014, vol. 155, pp. 823–829.

35. Ferguson, L.R. and Denny, W.A., Anticancer drug and underestimated risk or an underutilized resource in mutagenesis?, Mutat. Res., 1995, vol. 331, pp. 1–26.

36. Kang, Y.H., Lee, K.A., Ryu, C.J., Lee, H.G., Lim, J.S., Park, S.N., Paik, S.G., and Yoon, D.Y., Mitomycin C induces apoptosis via Fas/FasL dependent pathway and suppression of IL-18 in cervical carcinoma cells, Cancer Lett., 2006, vol. 237, pp. 33–44.

37. Patel, D., Shukla, S., and Gupta, S., Apigenin and cancer chemoprevention: progress, potential and promise (review), Int. J. Oncol., 2007, vol. 30, no. 1, pp. 233–245.

38. He, J., Ning, C., Wang, Y., Ma, T., Huang, H., Ge, Y., Liu, J., and Jiang, Y., Natural plant flavonoid apigenin directly disrupts Hsp90/Cdc37 complex and inhibits pancreatic cancer cell growth and migration, J. Funct. Foods, 2015, vol. 18, pp. 10–21.

39. Kaur, K., Arora, S., Singh, R., Walia, H., Nagpal, A., and Kumar, S., Antimutagenic/anticarcinogenic potential of plant polyphenols—a review, in Appl. Microbiol. Biotechnol., Verschaeve, L., Ed., Kerala: Research Signpost, 2006, pp. 23–59.

40. Pryor, W.A., Cancer and free radicals, in Antimutagenesis and Anticarcinogenesis Mechanisms. Basic Life Sciences, Shankel, D.M., Hartman, P.E., Kada, T., Hollaender, A., Wilson, C.M., and Kuny, G., Eds., Boston, MA: Springer, 1986, vol. 39, pp. 49–50.

41. Maron, D.M. and Ames, B.N., Revised methods for Salmonella mutagenicity test, Mutat Res., 1983, vol. 13, pp. 173–215.

42. Choi, C.W., Kim, S.C., Hwang, S.S., Choi, B.K., Ahn, H.J., Lee, M.Y., Park, S.H., and Kim, S.K., Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison, Plant Sci., 2002, vol. 163, pp. 1161–1168.

43. Hashemi, M., Long, M.N., Entezari, M., Nafisi, S., and Nowroozii, H., Anti-mutagenic and pro-apoptotic effects of apigenin on human chronic lymphocytic leukemia cells, Acta Med. Iran., 2010, vol. 48, no. 5, pp. 283–288.

44. Liao, Y., Shen, W., Kong, G., Lv, H., Tao, W., and Bo, P., Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells, PLoS One, 2014, vol. 9, no. 3, pp. e92007.

45. Jung, W.W., Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells, Int. J. Mol. Med., 2014, vol. 33, pp. 1327–34.

46. Khole, S., Panat, N.A., Suryawanshi, P., Chatterjee, S., Devasagayam, T.P.A., and Ghaskadbi, S., Comprehensive assessment of antioxidant activities of apigenin isomers: vitexin and isovitexin, Free Radicals Antioxid., 2016, vol. 6, no. 2, pp. 155–66.

47. Yamada, J. and Tomita, Y., Anti-mutagenic activity of caffeic acid and related compounds, Biosci. Biotechnol. Biochem., 1996, vol. 60, no. 2, pp. 328–329.

48. Tsai, Y.L., Chiou, S.Y., Chan, K.C., Sung, J.M., and Lin, S.D., Caffeic acid derivatives, total phenols, antioxidant and anti-mutagenic activities of Echinacea purpurea flower extracts, Food Sci. Technol., 2012, vol. 46, pp. 169–176.

49. Kai, H., Obuchi, M., Yoshida, H., Watanabe, W., Tsutsumi, S., Park, Y.K., Matsuno, K., Yasukawa, K., and Kurokawa, M., In vitro and in vivo anti-influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08), J. Funct. Foods, 2014, vol. 208, pp. 214–223.

50. Ferguson, L.R., Lima, I.F., Pearson, A.E., Ralph, J., and Harris, P.J., Bacterial antimutagenesis by hydroxycinnamic acids from plant cell walls, Mutat. Res., 2003, vol. 2542, pp. 49–58.

51. Satyamitra, M., Mantena, S., Nair, C.K.K., Chandna, S., Dwarakanath, B.S., and Uma, DeviP., The antioxidant flavonoid, orientin and vicenin enhanced repair of radiation-induced damage, SA J. Pharma. Pharmacol., 2014, vol. 1, no. 1, p. 105. https://doi.org/10.18875/2375-2262.1.105

52. Shahidi, F. and Naczk, M., Phenolics in Food and Nutraceuticals, Boca Raton, FL: CRC Press Taylor and Francis Group, 2003.

53. Tlili, N., Mejri, H., Anouer, F., Saadaoui, E., Khaldi, A., and Nasri, N., Phenolic profile and antioxidant activity of Capparis spinosa seeds harvested from different wild habitats, Ind. Crops Prod., 2015, vol. 76, pp. 930–935.

54. Kocak, M.S., Sarikurkcu, C., Cengiz, M., Kocak, S., Uren, M.C., and Tepe, B., Salvia cadmica: phenolic composition and biological activity, Ind. Crops Prod., 2016, vol. 85, pp. 204–212.

55. Mukhopadhyay, M.J., Saha, A., and Mukherjee, A., Studies on the anticlastogenic of turmeric and curcumin on cyclophosphamide and mitomycin C in vivo, Food Chem. Toxicol., 1998, vol. 36, pp. 73–76.

56. Ündeger, Ü., Aydn, S., Basaran, A., and Basaran, N., The modulating effects of quercetin and rutin on the mitomycin C induced DNA damage, Toxicol. Lett., 2004, vol. 151, pp. 143–149.