Проведена идентификация и молекулярный анализ высокомолекулярных субъединиц глютенина (HMW-GS) образца дикой полбы T. dicoccoides К5199. Выявлены новые HMW субъединицы глютенина 1АхTd и 1ByTd. Определены нуклеотидные последовательности генов 1АхTdи 1ByTd(коды доступа в базе данных GenBank MH475136 и MG897125 соответственно). Установлено, что кодирующая последовательность гена 1АхTdимеет наибольшее сходство с геном 1Ах1 T. aestivum(99,7 %), в то время как последовательность гена 1ByTd– сгенами других образцов T. dicoccoides(98,5 и 97,6 %). Первичная и вторичная структуры белка исследованных HMW-GSпозволяют прогнозировать высокий вклад в хлебопекарные cвойства субъединицы 1АхTd и средний вклад ‑ субъединицы 1ByTd. Оценка важнейших критериев качества зерна показала повышенное содержание белка и клейковины, но сниженные реологические характеристики клейковины T. dicoccoidesК5199.
РЕЗЮМЕ. Проведено ідентифікацію і молекулярний аналіз високомолекулярних субодиниць глютенина (HMW-GS) зразка дикої полби T. dicoccoides К5199. Виявлено нові HMW субодиниці глютенина 1АхTd і 1ByTd. Визначено нуклеотидні послідовності генів 1АхTd і 1ByTd (коди доступу в базі даних GenBank MH475136 і MG897125 відповідно). Встановлено, що кодує послідовність гена 1АхTd має найбільшу схожість з геном 1Ах1T. aestivum (99,7 %), в той час як послідовність гена 1ByTd‑ з генами інших зразків T. dicoccoides (98,5 і 97,6 %). Первинна і вторинна структури білка досліджених HMW-GS дозволяють прогнозувати високий внесок в хлібопекарські cвойства субодиниці 1АхTd і середній внесок субодиниці 1ByTd. Оцінка найважливіших критеріїв якості зерна показала підвищений вміст білка і клейковини, але знижені реологічні характеристики клейковини T. dicoccoides К5199.
Ключові слова: T. dicoccoides, HMW-GS, SDS-електрофорез, секвенування, первинна та вторинна структура білка, якість зерна
T. dicoccoides, HMW-GS,SDS-электрофорез, секвенирование, первичная и вторичная структура белка, качество зерна
Повний текст та додаткові матеріали
Цитована література
1. Goncharov, N.P., Kondratenko, E.Ya., Wheat origin, domestication and evolution, Vestn.VOGiS, 2008, vol. 12, no. 1/2, p. 15979.
2. Ozkan, H., Willcox, G., Graner, A., Salamini, F., and Kilian, B., Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides), Genet. Resour. Crop Evol., 2011, vol. 58, no. 1, p. 1153. https://doi.org/10.1007/s10722-010-9581-5
3. Cakmak, I., Torun, A., Millet, E., Feldman, M., Fahima, T., Korol, A.B., Nevo, E., Braun, H.J., and Ozkan, H., Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat, Soil Sci. Plant Nutr., 2004, vol. 50, no. 7, p. 104754. https://doi.org/10.1080/00380768.2004.10408573
4. Jiang, Z.L., Wu, B.H., Wang, Z.Z., Hu, J.L., Yuan, J., Chen, H.L., Liu, J., Zheng, Y.L., and Liu, D.C., Enriching novel Glu-Ax alleles and significantly strengthening gluten properties of common wheat through wide hybridization with wild emmer, J. Cereal Sci., 2017, vol. 76, p. 2719. https://doi.org/10.1016/j.jcs.2017.04.018
5. Ribeiro, M., Miranda, J., and Branlard, G., One hundred years of grain omics: identifying the glutens that feed the world, J. Proteome Res., 2013, vol. 12, no. 11, pp. 4702–4716. https://doi.org/10.1021/pr400663t
6. Payne, P.I., Lawrence, G.J., Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat, Cereal Res. Com., 1983, vol. 11, no. 1, p. 2935.
7. Sun, M., Yan, Y., Jiang, Y., Xiao, Y., Hu, Y., Cai, M., Li, Y., Hsam, S.L.K., and Zeller, F.J., Molecular cloning and comparative analysis of a y-type inactive HMW glutenin subunit gene from cultivated emmer wheat (Triticum dicoccum L.), Hereditas, 2004, vol. 141, no. 1, pp. 46–54. https://doi.org/10.1111/j.1601-5223.2004.01835.x
8. Payne, P.I., Nightingale, M.A., Krattiger, A.F., and Holt, L.M., The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties, J. Sci. Food Agric., 1987, vol. 40, no. 1, pp. 51–65. https://doi.org/10.1002/jsfa.2740400108
9. Liang, D., Tang, J., Peca, R.J., Singh, R., He, X., Shen, X., Yao, D., Xia, X., and He, Z., Characterization of CIMMYT bread wheats for high- and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers, Euphytica, 2010, vol. 172, no. 2, pp. 235–250. https://doi.org/10.1007/s10681-009-0054-x
10. Shewry, P.R., Gilbert, S.M., Savage, A.W.J., Tatham, A.S., Wan, Y.F., Belton, P.S., Wellner, N., D’Ovidio, R., Bekees, F., and Halford, N.G., Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties, Theor. Appl. Genet., 2003, vol. 106, no. 4, pp. 744–750. https://doi.org/10.1007/s00122-002-1135-6
11. Santagati, V.D., Sestili, F., Lafiandra, D., D’Ovidio, R., Rogniaaux, H., and Masci, S., Characterization of durum wheat high molecular weight glutenin subunits Bx20 and By20 sequences by a molecular and proteomic approach, J. Mass Spectrom., 2016, vol. 51, no. 7, p. 5127. https://doi.org/10.1002/jms.3776
12. Branlard, G., Dardevet, M., Amiour, N., and Igrejas, G., Allelic diversity of HMW and LMW glutenin subunits and omega gliadins in French bread wheat (Triticum aestivum L.), Genet. Resour. Crop Evol., 2003, vol. 50, no. 7, pp. 669–679. doi 10. 1023/A:1025077005401
13. Li, Y., Zhou, R., Branlard, G., and Jia, J., Development of introgression lines with 18 alleles of glutenin subunit and evaluation of the effects of various alleles on quality related traits in wheat (Triticum aestivum L.), J. Cereal Sci., 2010, vol. 51, no. 1, pp. 127–133. https://doi.org/10.1016/j.jcs.2009.10.008
14. Novoselskaya-Dragovich, A.Yu., Genetics and genomics of wheat: storage proteins, ecological plasticity, and immunity, Russ. J. Genet., 2015, vol. 51, no. 5, pp. 476–490. https://doi.org/10.1134/S102279541505004X
15. Caballero, L., Martin, L.M., and Alvarez, J.B., Allelic variation for the high- and low-molecular-weight glutenin subunits in wild diploid wheat (Triticum urartu) and its comparison with durum wheat, Aust. J. Agr. Res., 2008, vol. 59, pp. 906–910. https://doi.org/10.1071/AR08065
16. Lua, C.M., Yanga, W.Y., Zhanga, W.J., and Lua, B.-R., Identification of SNPs and development of allelic specific PCR markers for high molecular weight glutenin subunit Dtx1.5 from Aegilops tauschii through sequence characterization, J. Cereal Sci., 2005, vol. 41, pp. 13–18. https://doi.org/10.1016/j.jcs.2004.05.006
17. Margiotta, B., Colaprici, G., and Urbano, M., Polymorphism of high Mr glutenin subunits in wild emmer Triticum turgidum subsp. dicoccoides: chromatographic, electrophoretic separation and PCR analysis of their encoding genes, Genet. Resour. Crop Evol., 2014, vol. 61, no. 2, p. 33143. https://doi.org/10.1007/s10722-013-0037-6
18. Liu, Z., Yan, Z., Wan, Y., Liu, K., Zheng, Y., and Wang, D., Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species, Theor. Appl. Genet., 2003, vol.106, no. 8, pp. 1368–1378. https://doi.org/10.1007/s00122-002-1175-y
19. Singh, N.K., Shepherd, K.W., and Cornish, G.B., A simplified SDS-PAGE procedure for separating LMW subunits of glutenin, J. Cereal Sci., 1991, vol. 14, no. 3, pp. 203–208. https://doi.org/10.1016/S0733-5210(09)80039-8
20. Laemmli, U.K, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685.
21. Kumar, T.A., CFSSP: Chou and Fasman secondary structure prediction server, Wide Spectrum, 2013, vol. 1, no. 9, pp. 15–19. https://doi.org/10.5281/zenodo.50733
22. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1596–1599. https://doi.org/10.1093/molbev.msm092
23. Dobrotvorskaya, T.V. and Martynov, S.P., Analysis of diversity of Russian and Ukrainian bread wheat (Triticum aestivum L.) cultivars for high-molecular-weight glutenin subunits, Russ. J. Genet., 2011, vol. 47. no. 7, p. 799812. https://doi.org/10.1134/S1022795411070052
24. Ribeiro, M., Bancel, E., Faye, A., Dardevet, M., Ravel, C., Branlard, G., and Igrejas, G., Proteogenomic characterization of novel x-type high molecular weight glutenin subunit 1Ax1.1, Int. J. Mol. Sci., 2013, vol. 14, no. 3, p. 565067. https://doi.org/10.3390/IJMS1403-5650
25. Shewry, P.R. and Tatham, A.S., Disulphide bonds in wheat gluten proteins, J. Cereal Sci., 1997, vol. 25, pp. 207–227.
26. Wieser, H. and Zimmermann, G., Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality, Eur. Food Res. Technol., 2000, vol. 210, no. 5, pp. 324–330. doi 10.1007/s002170050558
27. Jin, M., Xie, Z., Li, J., Jiang, S., Ge, P., Subburaj, S., Li, X., Zeller, F.J., Hsam, S.L.K., and Yan, Y., Identification and molecular characterization of HMW glutenin subunit 1By16* in wild emmer, J. Appl. Genet., 2012, vol. 53, no. 3, pp. 24958. https://doi.org/10.1007/s13353-012-0101-5
28. Shewry, P.R., Halford, N.G., and Tatham, A.S., High molecular weight subunits of wheat glutenin, J. Cereal Sci., 1992, vol. 15, pp. 105–120. https://doi.org/10.1016/S0733-5210(09)80062-3
29. Utebayev, M., Dashkevich, S., Kunanbayev, K., Bome, N., Sharipova, B., and Shavrucov, Yu., Genetic polymorphism of glutenin subunits with high molecular weight and their role in grain and dough qualities of spring bread wheat (Triticum aestivum L.) from Northern Kazakhstan, Acta Physiol. Plant., 2019, vol. 41, p. 71. https://doi.org/10.1007/s11738-019-2862-5
30. He, Z.H., Liu, I., Xia, X.C., Liu, J.J., and Pena, R.J., Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality on Chinese bread wheats, Cereal Chem., 2005, vol. 82, no. 4, p. 34550. https://doi.org/10.1094/CC-82-0345
31. Guo, X.H., Hu, J.L., Wu, B.H., Wang, Z.Z., Wang, D., Liu, D.C., and Zheng, Y.L., Special HMW-GSs and their genes of Triticum turgidum subsp. dicoccoides accession D141 and the potential utilization in common wheat, Genet. Resour. Crop. Evol., 2016, vol. 63, no. 5, p. 83344. https://doi.org/10.1007/s10722-015-0287-6
32. Zhang, D., Yuan, Y., Su, Y., and Li, S., Analysis of dough rheological property and gluten quality characteristics in wild emmer wheat (Triticum dicoccoides (Korn. ex Asch. et Graebn.) Schweinf.), Genet. Resour. Crop Evol., 2016, vol. 63, no. 4, pp. 675–683. https://doi.org/10.1007/S10722-015-0275-x
33. Rasheed, A., Xia, X.C., Yan, Y.M., Appels, R., Mahmood, T., and He, Z.H., Wheat seed storage proteins: advances in molecular genetics, diversity and breeding applications, J. Cereal Sci., 2014, vol. 60, no. 1, pp. 11–24. https://doi.org/10.1016/j.jcs.2014.01.020
34. Obukhova L.V., Shumny V.K., Composition of high molecular weight glutenin subunits in common wheat varieties and promising lines, Russ. J. Genet., 2018, vol. 54, no. 3, p. 30513. https://doi.org/10.1134/S10-22795418030092
35. Barak, S., Mudgil, D., and Khatkar, B.S., Biochemical and functional properties of wheat gliadins: a review, Crit. Rev. Food Sci. Nutr., 2015, vol. 55, no. 3, pp. 357–368. https://doi.org/10.1080/10408398.2012.654863